Safety and Robust Design

Hazard Detection & Collision Avoidance

In progress

Sensors, Form Factor, Materials used

CuyBot

Apart from (one or two) Lidar sensors and RGB-D cameras cuyBot includes multiple sensors to register contacts with objects or humans. The robot’s outer hull is mounted via force sensors on the main chassis of the robot. If the outer hull collides with anything, it generates a signal on these sensors. In addition there are multiple capacitive sensors which detect close proximity to a human. Also the novel wheel units used on the robot (SmartWheels) enable the detection of external forces acting on the robot to some degree.

Pepper

Pepper is equipped with full-spectrum Light-Emitting Diodes (LEDs), speakers and microphones for immersive interaction and voice communications with humans (more details on this sensors).

Additionally, the CROWDBOT Pepper is equipped with a custom sensor suite which includes two 2D SICK TiM571 LiDARs mounted on a base ring at the base of the robot to provide high resolution range data for mapping and obstacle detection. The ring itself is attached to Pepper’s base via three 3D printed connectors that conform to the curvature of Pepper’s base and provide a horizontal mounting surface. Also, an Intel RealSense D435 depth sensor was included due to its versatility and field of view, such sensor was integrated using a head mount developed in the H2020 European Project MuMMER (MultiModal Mall Entertainment Robot).

The Pepper robot’s sensors

Smart Wheelchair

We consider a modified Salsa M2 Quickie wheelchair platform augmented with sensors to create a smart wheelchair that is capable of shared control navigation. Our design considerations account for long range, proximity, and contact sensing to ensure the safety of the wheelchair user and nearby pedestrians.

A 3D CAD model of the smart wheelchair (showing placement of the Hokuyo lidar, RGBD camera, bumper contact sensors, and ultrasonic clusters with time-of-flight sensors) is shown below (see figure below).

3D model of the smart wheelxhair. The Intel RealSense RGBD camera and sensor frame, ultrasonic sensor clusters, contact bumper sensors, and Hokuyo lidar sensors are also shown

More details about this sensors

Ethical & Safety Measures

In this work, we focused on the identification of foreseeable hazards when a robot navigates in crowded environments and/or engage in social interaction with pedestrians. We developed a list of hazards considering both physical as well as psychological harms, all detailed in D6.1. With respect to physical contacts, we distinguished them into “intended” and “unintended”. We further divided contacts into “from robot to human” and “from human to robot”. The types of physical contacts identified include collision, squash, push, swipe, drag, and touch. As far as psychological hazards are concerned, we considered potential harms deriving from robot presence, appearance, motion, physical contacts, and social capabilities. In addition, in collaboration with the Crowdbot robots’ designers, we performed a preliminary risk estimation exercise with respect to the physical and psychological hazards related to powered wheelchairs, the Pepper robot, and the cuyBot.

In the framework of this work, the Ethical and Safety Advisory Board (ESAB) has been activated and two teleconference meetings organized in order to discuss the crowdbots scenarios and the ethical and legal implications of crowdbots. The role of ESAB is to advise the consortium on risk assessment of project experiments; design of ethical protocols and available standards.