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Executive Summary 
 

This report details the reactive navigation techniques developed for the CrowdBot project between months              
M1 to M30. In this sense, we have investigated three main technical components for achieving reactivity in                 
different types of mobile or service robots when navigating in crowded environments. 
Each of the three technical components are designed to complement high-level planning techniques and              
focus on exploiting different sensing capabilities of the different robots. In this report, we present tests in                 
both simulation and real environments showcasing the applicability of the proposed solutions for dynamic              
environments.. 

 In particular, the three key challenges that we addressed are: 

● Fast reactive navigation based on proximity sensing that adapts quickly to dynamic environments             
with pedestrians and guarantees obstacle avoidance. 

● Executing low-latency local collision avoidance considering the actual physical constraints of the            
robots, from shape to kinematic constraints. 

● Post-collision response in case of pedestrians unpredicted or untrackable behaviour by controlling            
the direction of motion of the robot to minimize the contact forces exerted.  

For proximity based solutions to the reactive navigation problem, we present two approaches. The first               
solution is based on a dynamical system (DS) representation of the robot's control input and its environment                 
(obstacles) offering a continuous solution in closed-form equations of harmonic potential flow around             
multiple moving obstacles, as such, enables the robot to react immediately to dynamic obstacles. This               
approach was implemented both in simulation and on a wheeled omnidirectional robot and validated for               
holonomic robot control in 2D space, effectively controlling the robot direction and velocity in a plane.                
Further details are described in section 3, and the open source code is available at:               
https://github.com/epfl-lasa/dynamic_obstacle_avoidance_linear​ . 

The second approach focuses on non-holonomic (limited motion capabilities as wheelchairs) and            
non-circular robots, providing a solution to complement high-level planners and navigate tight environments             
with accurate robot shape descriptions. This would be an advantage for robots whose shape would be over                 
increased if a point-mass approach were to be used. The proposed method formulates a convex optimization                
problem for representing the robot with accurate shapes, offering a reactive response that assumes a coupling                
with a higher level planner (navigation algorithm or human driver); extending the method of velocity               
obstacles (VO). This approach is validated in both simulation environments and real robots with the               
CrowdBot robot Qolo which has similar kinematics to standard powered wheelchairs. Further details are              
described in section 4, and the open source code is available at: ​https://github.com/epfl-lasa/rds​. 

Finally, post-collision reactivity was investigated through the concept of compliance control for achieving a              
directional compliance to unexpected collisions that would minimize the collision force without forcing the              
robot to freeze. We present a method for estimating contact forces at the robot's surface through learning                 
nonlinear stiffness and compliance to internal force torque sensors. Then estimated collision location and              
magnitude is used in a continuous compliant controller that cancels the contact forces in a closed-loop                
system.  Further information is detailed in section 5.  
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1. Introduction 
 

CrowdBot project deals with robot motion, control, and decision-making processes within dense crowd             
environments, therefore, a fundamental component is to have reactive motion planning that would deal with               
unexpected changes in the dynamics of the surrounding crowd that could not be predicted fast enough for                 
full-motion replanning. Herewith, the methods presented in this report focus in complementing high-level             
motion planners as described in D3.1 and D3.3. 

In this report, we detail two main components developed for reactive navigation that could be coupled with                 
any high-level path planning, including direct human input in shared-control schemes. First, we investigate              
proximity based reactivity through the usage of the robots' available LIDAR and RGBD sensing, which aims                
to guarantee obstacle avoidance based on the models of the pedestrian motions and the state of the robot.                  
Second, we investigate the post-collision reactions in case of pedestrians’ unpredictable abrupt motions             
causing contact with the robot, in this case, we make use of contact sensing such as force and torque (F/T)                    
sensors, for achieving compliance in the direction of the impact.  

The algorithms reported here have been tested in the CrowdBot version of the Qolo robot [Paez-Granados D,                 
et al, 2018], adapted with the recommendations from D6.2. Both in simulation and real life experiments                
within laboratory settings and natural crowds. For such experimental validations we have integrated the              
CrowdBot detection and tracking system documented in D2.2, with our array of LIDAR and RGBD sensors.                
In parallel simulated evaluations have been developed in the CrowdBot simulator documented in D4.2 where               
the Qolo robot has been integrated. 

In the following section, we describe the state of the art in collision avoidance, describing the contribution of                  
the developed algorithms for dynamic environments for both holonomic, and non-holonomic robots. Section             
3 details the first approach and experiments validating on an omnidirectional robot. Section 4, describes in                
detail the robot Qolo adapted for crowd navigation. Finally, section 5, addresses the second approach               
focused on non-circular and non-holonomic robots and assistive driving testing with the robot Qolo.  
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2. Related Work 
Robots that work in real-life environments often have to deal with dynamic obstacles like a pedestrian                
running in front of an autonomous car or a bird flying in front of a drone. In such cases, the robot cannot                      
follow its initial path anymore and has to compute a new path quickly enough to avoid a collision. Such                   
robots also have to face situations in which the state of the environment differs from their inner knowledge                  
as static obstacles change to a new configuration. The problem to adapt and control the robot’s motion                 
suitably in such situations is in the focus of several related research fields, known as reactive control,                 
reactive motion planning, collision avoidance and obstacle avoidance. Recent reviews are given e.g. by              
[Kamil et al., 2015] and [Hoy et al., 2015]. 

2.1. Obstacle avoidance 

Methods for obstacle avoidance typically emphasize convergence in addition to preventing collisions, i.e.             
they provide navigation laws that move the robot through free space and guarantee to lead it to a particular                   
destination. They share these two goals with path planning methods [Choset et al., 2005], which have a                 
stronger focus on static environments. Addressing mostly the static case, numerous techniques have been              
proposed, such as artificial potentials [Khatib, 1986], navigation functions [Rimon and Koditschek, 1992],             
[Rimon and Koditschek, 1991], and probabilistic exploration by random trees. On the other hand, velocity               
obstacles [Fiorini and Shiller, 1998] are a traditional framework for planning trajectories among moving              
objects.  

Planning a trajectory that leads the robot from its current position to the target location can be                 
computationally expensive, especially in complex environments. Furthermore, the whole trajectory may have            
to be re-planned if it is made invalid by a sudden change in the environment. 

Other methods try to avoid path planning, e.g. recent developments use power diagrams to identify a                
collision-free convex neighbourhood around the robot. A continuous flow is then generated by solving the               
associated convex optimization problem [Arslan and Koditschek, 2016] and convergence is ensured for             
convex obstacles. Machine learning algorithms have been directly applied to sensor data to obtain              
data-driven control laws [Michels et al., 2005] but they cannot ensure impenetrability. Other similar              
navigation functions transform star-shaped obstacles and trees of stars into simpler environments in which              
obstacles are reduced to spheres and convergence to the global minima can be ensured for almost all                 
trajectories [Paternain et al., 2017]. 

Ensuring both convergence to the target location and impenetrability is not a trivial task. Some path planning                 
oriented methods ensure global convergence for quasi static environments at the expense of a high               
computational cost which precludes online applications [LaValle and Kuffner, 2001]. On the software side,              
re-planning only a part of the trajectory [Ferguson et al., 2006] or deforming it locally [Brock and Khatib,                  
2002] are ways to reduce the workload, but do not guarantee global convergence. Other approaches focus on                 
improving the hardware for faster processing [Murray et al., 2016]. Such advances in software and hardware                
have made possible the real-time application in dynamic environments of optimization algorithms such as              
model predictive control [Rasekhipour et al., 2016]. 

Control using dynamical systems (DS) offers an alternative to address such situations. The control law can                
ensure the impenetrability of obstacles and does not require re-planning as it is closed form [Feder and                 
Slotine, 1997]. A DS-based solution guarantees stability and convergence while offering on-the-fly reactivity             
[Khansari-Zadeh and Billard, 2011]. This approach has been extended to a Modulated Dynamical System              
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(MDS) which represents obstacles analytically as star-shaped level sets of a distance function and considers               
the robot as a point moving in cartesian space (in the case of mobile robot navigation). It guarantees to lead                    
the robot to its goal by exploiting the assumptions that the robot is holonomic, and it offers a closed-form                   
solution, as such, it enables the robot to react immediately to obstacles. This is particularly useful when the                  
robot has only a partial view of the environment, and that obstacle may suddenly appear following an update                  
on on-board sensing [Huber et al., 2019]. 

2.2. Reactive control and collision avoidance  

Reactive control in a broad sense is concerned with making robots react appropriately to unforeseen events,                
e.g. avoid a collision with an appearing object or person. Works from this branch thus mostly aim to affect                   
the robot’s short-term behaviour [Mansard and Chaumette, 2007], [Dietrich et al., 2012]. Disregarding             
long-term trajectory planning and restricting the focus on collision avoidance itself simplifies the problem              
and favours computationally lightweight approaches which are applicable on complex robotic systems with             
high degree of freedom and kinematic constraints [Stasse et al., 2008]. 

Among such approaches, quadratic programs are popular as they can handle arbitrarily many constraints (in               
principle) for achieving collision avoidance between multiple limbs [Escande et al., 2014]. The method              
[Rauscher et al., 2016] treats robotic arms and uses constraints for collision avoidance within a QP wherein                 
the nominal velocity commands set the (unconstrained) optimum in the objective function. 

2.3. Non-holonomic and non-circular robot navigation 

Many mobile robots violate the assumptions of some obstacle avoidance methods that the robot’s shape is                
circular and that its lateral and longitudinal velocity can be chosen freely. While purely reactive control                
methods (as those discussed in the previous section) typically incorporate these aspects in their robot               
description, they do not provide guarantees beyond collision avoidance, e.g. regarding optimal avoidance             
trajectories. On the other hand, some navigation approaches specifically take these complications into             
account and optimize trajectories over a finite time horizon. 

The dynamic window approach [Fox et al., 1997] is a popular method, which treats robots with                
non-holonomic constraints, which occur in almost any vehicle with wheels. It optimizes over a set of circular                 
arc trajectories, where each trajectory is characterized by a constant linear (longitudinal) and angular              
velocity. It solves at every time step an optimization problem subject to constraints that represent potential                
collisions in the near future and dynamic constraints (due to acceleration bounds). However, it does not                
represent obstacle velocities and assumes a circular robot shape. It has also been applied for               
semi-autonomous wheelchairs [Carlson and Demiris, 2012]. A related approach is given by [Schlegel, 1998],              
which can handle non-circular shapes, too, but does not take into account object velocities either. 

We propose the RDS method to take into account object velocities in addition to non-holonomic kinematics                
and a non-circular shape for the robot. The method employs the well-known velocity obstacle (VO) concept                
[Fiorini and Shiller, 1998], which originally considers circular obstacles that move with constant velocities              
and defines for the circular agent the corresponding cone-shaped sets of constant velocities that will lead to a                  
collision in the future. The proposed method formulates a convex optimization problem similar to the               
Optimal Reciprocal Collision Avoidance (ORCA) method [Van Den Berg et al., 2011]. ORCA limits the               
time horizon for considering collisions in the future to a finite value τ and thus truncates each VO cone.                   
Disregarding long term interactions, ORCA enables agents to avoid collisions in the near future in an optimal                 
manner, deviating minimally from their preferred velocities. 
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In contrast to ORCA, our method treats non-circular robot shapes and thus takes into account rotation and                 
not only translation. Still, the differential degree of freedom remains two due to the non-holonomic               
kinematics. More specifically, the robot’s instantaneous center of rotation must be on the infinite line which                
contains the wheel axle. While many prior works extend VO-based methods such as ORCA to non-circular                
or non-holonomic robots, they mostly consider only one of these two aspects (e.g. [Alonso-Mora et al., 2013]                 
considers the non-holonomic case). When considering non-circular holonomic robots, it is common to             
replace in the classical VO the robot’s shape by the area which it sweeps for a given amount of rotation (e.g.                     
in [Best et al., 2016], [Ma et al., 2018], [Giese et al., 2014]), which allows to separate the rotational and                    
translational velocity computation. They rely on pre-computed look-up tables that store such swept surfaces              
for different amounts of rotation. In contrast, we employ the VO concept in a more simple and lightweight                  
framework addressing non-holonomic and non-circular robots. 

We introduce a novel technique, considering individual collisions between surrounding agents and the             
closest corresponding incircle in the robot’s capsule shape and constructing the relative VO. The approach               
linearly approximates these individual VOs and relates them via the robot’s nonholonomic kinematic             
mapping to yield a single problem for the velocity of a specific robot-fixed reference point. This problem’s                 
solution prescribes the reference point velocity and thereby also implicitly both the robot’s linear and angular                
velocity due to the nonholonomic kinematic relations. 
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3. Modulated Dynamical System 
The main objective of the reactive control module is to provide a layer for local navigation assistance and 
immediate responsiveness to unmodeled or unpredicted object occurrences or motions. Therefore, this 
algorithm assumes a continuous dynamical system guiding the robot's motion to be existing and given by a 
high-level algorithm that plans for optimality towards its intended goal. 

The Modulated Dynamical System (MDS), represents obstacles analytically as star-shaped level sets of a 
distance function that absorb the robot's footprint, thus, allowing the robot to be represented as a point 
moving in the cartesian space, as shown in Figure 3.1. It guarantees to lead the robot to its goal (hereafter 
called attractor) by exploiting the assumptions that the robot is holonomic, deriving its virtual boundary as a 
circle-shaped and that the objects are star-shaped [Huber L., et al 2019].  

In this section, we explain this concept and its evaluation on an omnidirectional wheeled platform using 
onboard sensing. 

3.1. System Representation  

           

Figure 3.1. Example of robot-human representation for the approach on reactive motion planning. 

 
 
To understand this approach one first needs to understand how the system will approximate its world. In the 
case of robot obstacle avoidance, this means, the robot and the obstacles. This method represents each 
obstacle by a corresponding continuous distance function with three regions, at the boundary ( =1)()Γ ()Γ  
means the robot is in a position  which implies contact with the obstacle; at the exterior of the obstacle with a 
distance greater than one ( >1) meaning positions at a distance greater than zero from the obstacle()Γ  
boundary; or within the obstacle ( <1), as described in Figure 3.2.()Γ  
From this definition, we can extract the normal direction pointing away from the object’s surface as the 
gradient of the distance function as |, which allows constructing a tangential unit vectorn , ] /|[ 1 n2 = ∂x

∂Γ
∂x
∂Γ  

e , ] − , ][ 1 e2 = [ n2 n1  
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Figure 3.2: Left: Star-shape definition for obstacles, right: robot's definition of the distance function used to 

characterize the obstacle [Huber L., et al 2019]. 
 

The method guarantees impenetrability of the obstacles as long as we can define them as star-shape, which is                  
any concave or convex shape where there exists a reference point inside its boundary that could connect           x )( o        
in a straight line with any point in the surface without crossing the boundary (as shown in Figure 3.2,          x )(            
left). 

3.2. Obstacle Avoidance Formulation 
 
For a given goal location , the method constructs a nominal velocity field  which guides the robotxgoal (x)f  
from every possible position in space straight to the goal according to . Multiplication of(x) − (x )f = k − xgoal  
this nominal velocity with the modulation matrix  gives the actual velocity command for the robot toM  
avoid collisions with the objects in its way. The modulation matrix  has the form , withM = DEM : E −1  
diagonal matrix  and with the matrix  having the vectors  and  as the first and second column,D E r e  
respectively. The entries on the diagonal of  have therefore the effect to rescale the nominal velocity’sD  
components in the direction towards the reference point and the tangential direction. Herewith, the method 
lets the first entry on the diagonal decay to zero as  approaches one and the second entry increases by theΓ  
respective amount, which absorbs the nominal velocity’s normal component (as the reference point is within 
the object and the object is assumed to be star-shaped) and amplifies the tangential component. Thereby, it 
guarantees both collision avoidance and reaching the goal. 
 
The following example in Figure 3.3, displays a vector field directed to the attractor (green dot) at 

() being modulated by a single obstacle and 2 obstacles. The red dots in the left represent initial2, )xgoal = ( 0  
states of the robot. 
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Figure 3.3. Simple obstacles as circles in a linear dynamical system modulated by the current approach. 

When navigating in crowds, avoiding obstacles very rapidly using low-level command is crucial as these 
obstacles may appear rapidly and time to react is very limited. Therefore, this approach would fit into a 
low-level controller guaranteeing impenetrability of obstacles given an autonomous dynamical system that 
guides the robot towards its desired goal. 

Multiple obstacles as it is expected in crowd navigation can be equally handled by the current method as 
long as they pose a star-shape. For this purpose a weighted sum of the modulated dynamical system for each 
obstacle's distance function is used, separating magnitude and directional control.(x)Γ   

 

 

Figure 3.4: Simulation of a 2D navigation with a wheelchair represented as a point-mass and all pedestrians 
as circles. On the left, the 3D simulation, and on the right, the modulated velocity field followed by the robot 

[Huber L., et al 2019]. 

 
In Figure 3.4, an example for a point-mass control of a wheelchair is used around multiple sphere obstacles                  
(representing humans), in the right side the modulated dynamical system is presented. 
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3.3. Extended Representation of Obstacles 
 

The modulated dynamical system (MDS) approach for performing obstacle avoidance [Huber L., et al 2019], 
allows to handle continuous obstacle avoidance as long as the obstacles could be defined as a star-shape. An 
initial solution for handling non-star shape obstacles in the dynamical system (velocity field) modulation has 
been devised with three steps for each obstacle  (as described in Figure 3.5).  

First, a coordinate transformation maps the position of the robot and the obstacle at hand into space where 
the obstacle is defined as a circle. There, the robot’s angular position is such that it preserves across both 
spaces the arc length along the obstacle circumference between the projections of the robot and the attractor 
on the obstacle boundary. The robot’s distance to the obstacle boundary in the new space is a monotonic 
function of the original distance.  

Second, the MDS computes the velocity command in the new space, and third, the command is transformed 
back into the actual space by multiplication with the Jacobian of the inverse transformation. The final 
velocity command results as the distance-weighted average of the velocity commands computed in this 
manner for each individual obstacle. 

 

 

Figure 3.5: The dynamical system for obstacle avoidance is computed in three steps per obstacle. 

Impenetrability is still guaranteed for multiple star-shaped or non-star-shaped obstacles regardless of their 
position. Several obstacles can be considered at the same time in areas where their influence overlap by 
using a weighted mean of the velocity commands generated by all obstacles independently. 

To limit the influence of each obstacle to a small range, the weight of any contribution becomes zero if the 
distance to the respective obstacle is larger than that range. Convergence to the attractor is guaranteed for 
any trajectory that does not enter a region which falls into the range of two or more obstacles. The velocity 
field modulation result for multiple obstacles is shown in Figure 3.7. 

 

Subsequently, an initial solution for applying this algorithm in real-time navigation compatible with any 
current navigation system is given here through a method for transforming an occupancy grid (common 
mapping method in SLAM and navigation) representing the environment into a continuous shape (including 
concave) obstacle. As our projection method works with the obstacle boundaries, an enclosing surface is 
needed to be constructed for each group of occupied cells.  

An interpolation with cubic Bezier splines is performed to get a smooth surface even if the edge of a group 
of cells is not aligned with the grid (staircase effect) as shown in Figure 3.6. The approach obtains a smooth 
boundary for each obstacle by fitting a Bézier spline to the occupied cells.  
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Figure 3.6: Obstacle transformation from a grid map to a continuous shape through Bezier curves 

 

Finally, we present an example of map transformation including concave and convex objects being 
transformed from a standard grid map into a continuous shape, using the modulation and space 
transformation described above. 

  

Figure 3.7: The example shows the velocity field for an arrangement of several concave obstacles with 
guaranteed convergence to the attractor. 
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3.4. MDS applied to Non-holonomic Robots 
 

 

Figure 3.8: An example of a non-holonomic robot, this unicycle system has a set of wheels over the same 
axis. 

Non-holonomic motion implies that the number of degrees of freedom (DOF) of the robot is less than the 
space of work in which it will operate.Therefore, there are constraints in the achievable direction of motion, 
i.e., guaranteeing that the robot would follow the desired direction of motion for avoiding unexpected 
obstacles becomes more challenging.  

In this section we address the problem through a nonlinear model predictive control  (nMPC), so that all the 
kinematic constraints of the robot motion capabilities are taken into account, and solved in real-time for 
reactive navigation. 
In the case of mobile robots, a common configuration is that of a unicycle as in Figure 3.8. In this case, the 
robot has only 2 DOF [ ], for configuration space in 3D  . The kinematics of the robot can ω l  ω r X , Y , ][  θ  
be defined as, 

 

where  and  are the position and the orientation of the robot in a fixed reference frame; r is the radius, ,x y θ  
of the wheels, d is the distance between the two wheels and  and  are the angular velocity of the right ω r  ω l  
and left wheels.   and  . In Figure 3.8,  and  respectively,  which(ω  )/2v = r r + ω l ω  )/bω = ( r + ω l  u 2  u 1  
are the control inputs for the system. As a matter of fact it is possible to rewrite the dynamics of the system 
as 

 

Given the non-holonomic motion of the robot, this implies a set of constraints as not all possible                 
configurations are achievable from a given initial state. Therefore, we make use of an optimization at each                 
control step through a nMPC. 
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The nMPC's strength is the optimization considering a finite time-horizon, the nMPC optimizes N steps               
ahead in the future based on a given model of the system, thus, anticipating the events and taking proper                   
control actions; of the N control inputs computed we only make use of the control input for the current                   
time-step. Then, the process is repeated at each modulation step after the generation of the desired motion. 

The nMPC allows us to obtain better performances than a linear MPC, since it takes into account the full                   
dynamics of the system. This implementation exploits the potential of nMPC to generate control inputs that                
are bounded but not saturated.  

The reference trajectory is modeled as a virtual unicycle leader and described by a reference state vector                 
 and a reference control signal .ξ (t)r  (t)u r  

In order to implement the nMPC we used the optimization software Casadi [Andersson J.A.E. et al 2019 ].                  
The main characteristics for setting the controller are the variables to be optimized, the state trajectory ​X​,                 
which has dimension 3 × N + 1, and the control inputs U , with dimension 2 × N . 
For the current implementation we further define: 

● Cost function ​J  
● Continuous model of the system 
● Discretization of the system function (using Runge-Kutta4) 
● Sampling time ​h​: time step used to discretize 
● Limits of the system (soft and hard constraints) 
● Gains of the function to minimize 
● Number of prediction steps N 

 
The cost function ​J​ to minimize is: 

 
with Gx and Gu diagonal matrices composed by the gains that we have to set, depending on the importance                   
of the variable. , where is defined as the desired state of the robot given by the modulated DS.Xref Xref   
Our system, which can be modelled as a unicycle robot, with state defined by as described              ?ξ x, , ] = [ y θ T   
above by . The discretization of the system is done following Runge-Kutta4 method for a ​h​ time step. ξ*  
Then we defined the constraints on the state, on the inputs and the ones derived by the system’s dynamics.                   
We do not have any constraints on the state X, while we have limitations on the linear speed and acceleration                    
and on the angular speed and acceleration. For the linear and angular acceleration we have to approximate:                 
assuming a general acceleration constraint as , approximated as ,      ccu| *| < a constraint     accu||

 
k − u 

k−1
|
| < h constraint  

for a set of discrete steps , with a given time step .(k) h)(  
 
In order to take account of the non-holonomic constraints, we consider the head position of the unicycle,                 
which is the point that lies at a distance along the perpendicular bisector of the wheel axis ahead of the        d             
robot. As well, we have to include the constraints given by the dynamics of the system, using the discrete                   
function computed at each prediction step. We have to constrain the optimization variable to , which             X   X0   
is the initial pose of the robot from the point of view of the nMPC. i.e., the pose of the robot at the time-step                        
at which the nMPC is executed.  
The constraints are summarized here to be: 
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The outputs of the nMPC are N control inputs. Generally, only the first inputs are used and then the                   
optimization is computed again. In our case, we will use a number of control inputs equal to = /                 N input F control

. Where is the control frequency, i.e. the frequency at which we control the motors of theF DS    F control                 
robot, while is the frequency of the high level controller that gives us the reference pose for the nMPC.  F DS                   
The overall controller architecture is shown in Figure 3.9 with the flow of sensing data, state of the robot, to                    
the detailed modulation of the dynamical system and the optimization step with the nMPC. 
 
 
 

 

Figure 3.9: Control Diagram for MDS with nMPC for a non-holonomic robot. 

 

Figure 3.10, shows an example of the MDS and the design output for the orientation of the robot given the                    
online optimization through the nMPC. In the left side is a set of obstacles modulated as ellipses through the                   
method presented in the previous section, and in the right side the output commands to the robot given the                   
output of the nMPC controller.  

Page 16 of 71 

 



 
EU H2020 Research & Innovation – CROWDBOT Project ICT-25-2016-2017 
D3.4 Reactive Motion Planning 

 

 

Figure 3.10: Modulation of a linear dynamical system considering multiple obstacles and the desired final 
state of the robot including orientation. 
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4. Redirecting Driver Support for Non-holonomic and Non-circular Robots 
In case of a crowded environment (density of 1 person/m² or higher) and for a platform with an elongated 
shape (like Qolo),  a circle is a rather conservative simplification of the robot’s true shape. Further, the 
wheels induce a non-holonomic motion constraint. One can abstract from this constraint by controlling the 
bounding circle’s center (if it is not on the wheel axle). However, the location of the controlled point 
determines which orientation the robot approaches when following a straight motion: it will move forward if 
the controlled point is in front of the wheel axle and backwards otherwise. Since forward motion is desirable, 
the controlled point needs to be in front of the wheel axle, and as it also represents the center of the bounding 
circle, this requires a greatly enlarged radius if the robot’s shape extends mostly behind the wheel axle (as for 
Qolo). 

Thus, a supplementary approach, the method termed Redirecting Driver Support (RDS) has been developed, 
which replicates the behaviour of the MDS locally. While it sacrifices the guarantee to reach the global goal 
(by itself, i.e. without an additional path planner), it allows representing more accurately the robot shape 
detail and non-holonomic constraints of robot kinematics. 
The RDS approach has been designed to be functional when using raw laserscan measurements of objects 
and/or estimates from a tracking system (containing position and velocity information about objects). The 
control law computation requires geometric constructions and the solution of an optimization problem with 
characteristics like a linear program. We provide an efficient implementation which can be executed with a 
high control frequency on standard processors, as detailed in section 6.3, experimental analysis showed the 
current algorithm executed at 150Hz for a set of 900 constraints. 
Conceptually, this development extends the Velocity Obstacle framework by applying it locally for each 
object and the closest corresponding part of the robot’s non-circular shape. Thereby, it derives Cartesian 
velocity constraints for the robot’s local parts, and transforms the constraints via the kinematic relations into 
a single optimization space. The optimization then finds within the admissible velocity set the command 
which is closest to the driver’s command. 
The resulting behaviour locally deflects the nominal robot velocity to slide along or around objects rather 
than colliding with them, and it can therefore complement a high-level motion planner or assist a human 
driver or operator. Preliminary experimental results and practical demonstrations have been presented in the 
deliverables D1.4 and D3.1. The following sections describe the technical details and theoretical formulation, 
as well as subsequent experimental evaluations. 
 

4.1. Shapes Representation 
 
The method uses a capsule for the robot and circles for surrounding objects to model their collision shapes, 
as shown in Figure. 4.1. It further constructs for each object the corresponding closest incircle in the robot’s 
shape. As Figure. 4.2 shows, capsules are a shape class which can capture different types of intelligent 
vehicles. 
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Figure 4.1: The RDS method represents the robot by a capsule (blue) and the surrounding objects by circles 
(orange) and constructs corresponding closest local in-circles on the robot (pink) for collision avoidance. 
 

 
 

 
Figure 4.2: The top left picture shows the capsule approximation we use for Qolo, which is chosen rather 
conservative in order to provide a safety margin. The top right picture shows an example for an electric 
scooter. The bottom row shows all the research platforms for the CrowdBot project, whose footprint can also 
be described by a capsule. 
 

4.2. Robot Kinematics 
 
The method assumes that the robot’s degree of freedom is reduced to two by the fact that its wheels prevent 
their axle from translating laterally, which imposes a non-holonomic motion constraint. Therefore, the 
velocity of any point that does not belong to the line through the wheel axle determines the entire body’s 
velocity distribution. This relation between point velocities allows us to choose one point’s velocity to 
represent the state of motion, and we term this point as the reference point. The method uses the reference 
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point’s velocity as the optimization variable in the control computation. Into this optimization space, it maps 
linear velocity constraints that arise for other points’ velocities due to velocity obstacles for the purpose of 
collision avoidance. It also maps into this space the nominal command, which is given by the nominal linear 
forward velocity and the nominal angular velocity and uses it as the target for the optimization. 
 

4.3. Velocity Constraints 
 
First, each object’s velocity obstacle (VO) is constructed with respect to the corresponding closest incircle in 
the robot’s shape. Figure 4.3 shows the construction for an example incircle and object with a non-zero 
velocity. 

 
Figure 4.3: Constructing the velocity obstacle which an object (orange disk) induces for a robot part (pink 
disk). On the left, the object is enlarged by adding the robot radius and an additional margin (yielding the 

combined radius R). Tangent to the enlarged circle, a cone is drawn from the robot circle’s center, truncated 
along the circle boundary, and scaled by the inverse time horizon to yield the relative velocity obstacleτ  
(grey). On the right, this is shifted by the object’s velocity to yield the absolute velocity obstacle (grey 

filled). 
 
As a second step, the method derives a linear velocity constraint from every VO for the corresponding local 
incircle’s center point, as Figure 4.3 shows. 
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Figure 4.4: The linear approximation (red) for a velocity obstacle (grey) is derived by drawing the tangent at 
the point which is closest to the origin (in velocity space). 

 
Next, only if the linear constraint renders the origin infeasible, its boundary is shifted to go through the 
origin. Finally, the linear velocity constraint that arises for each locally closest point per object is 
transformed into the reference point’s velocity space. 
 
 

4.4. Optimization 
 
The method computes the linear and angular velocity command  which the robot will execute byv , )( * ω*  
minimizing its deviation from a given nominal command  coming from the driver or any higher-levelv, )( ω  
module. It achieves collision avoidance by imposing the above constraints on this optimization. The metric 
during the optimization is the Euclidean norm of the difference between the nominal velocity and the chosen 
velocity of the reference point. The nominal reference velocity ,  is computed via the(v, )vx ω (v, )vy ω  
aforementioned kinematic relations. The optimization problem is formally written as 

v , ) rg min (v )² v )²( x* vy* = a v ,vx y x − vx + ( y − vy   
s.t.               v y /y v (x )/y v ,ni

x
 
x  
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where  denote for the -th object the local linear constraint’s normal vector, denotes the,ni

x ni
y i bi  

corresponding offset from the origin (as shown in Figure 4.4). Further, , denote the correspondingx 
R,i y 

R,i  
closest point on the robot, and denote the reference point (both in local coordinates). From thex , 

P y 
P  

 
 

solution, the actual velocity command for the robot is then computed as ,  again(v , )v* x* vy* (v , )ω* x* vy*  
according to the kinematic relations. 
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5. Post Contact Compliant Control 
 

Considering post-collision handling of the robot control, we have as main objective to avoid that the robot 
freezes within a crowd, therefore, we investigate here a compliant control architecture based on an 
admittance behavior [Keemink, A. 2018] at the contact point, so that, we could react to collisions without the 
need to take the robot to a complete hold, which could lead to collisions with other moving agents. Initially, 
we are assuming a single collision per force/torque (F/T) sensor . 

In Figure 5.1, we present the controller architecture considering that the robot is driven by a high-level 
controller that takes into account the current state of the robot and plans the desired trajectory, thus, given a 
set of desired velocities. In parallel we have a F/T sensor input with a low-pass filter removing potential 
noise (tuned to the robot motion profile and hardware), subsequently the signal is processed through a learnt 
model of the surface damping-stiffness profile which handles the nonlinearities of the transformation 
between the external contact surface and the point of sensing at the F/T sensor. 

In order to control for the contact force at the collision location we transform both the collision force and the 
current state of the robot, then we introduce the controller dynamics at this point as: 

 

where M is the virtual mass of the robot, D represents the damping coefficient, the robot's velocity, ξ 
* F u

corresponds to the desired control input and the external contact force.F c  

 

Figure 5.1: Control diagram post-collision compliance control on a mobile robot. 

We consider the system to be controlled in the velocity space of the robot, therefore an integration step is 
required to control the output to the robot (first order discretization for a robot) 

  

where is a time constant for the discretization, then can be replaced asT s ξ**
u  
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Finally, the controller dynamics comes to be:  

 

where represents the output desired state, for a current state    of the robot with a given inputξd+1
* ξd

*  
command . The virtual mass M has been chosen as a function of the acceptable maximum contact (ξu

*

), so that, we can control directly for the desired limits in the interaction as,F max > 0  

 

which is state dependant of the current velocity at  the collision point , but limited to a maximum valueξ )( u
*  

of virtual mass for velocities below a set threshold of the robot, which could be set freely based on thev )( min  
desired response in each robot. 

 

Space transformation for non-holonomic constraints: 

The transformation between the robot control space and the contact point (assuming a single contact) at a 
given point c over the surface of the bumper, at an angle ( ) from the center of the bumper (as displayed inγ  
the example Figure 5.2. We could control the effective velocity (  ) at the point of collision perpendicularξ 

*  
to the bumper surface by transforming this to the control space of the robot as follows, 

 

where the distances , angles  and are depicted in Figure 5.2. And the velocities , l, Oo   ,β γ v, )( ω  
correspond to the control point of the robot at the center of the axis. 

 

Figure 5.2: Contact force transformation for estimating contact location and magnitude with reference to the 
robot’s control point. 
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Now, considering the compliant control scheme as explained above at the bumper surface, we propose a 
mapping that can control the non-holonomic constraint limits of the direction of motion of the robot for 
minimizing the contact force. First, the output is scaled with the robot's linear and angular velocity 
constraints , using the following,v , )( max ωmax  

 

Here, we have an infinite number of solutions over the line that would satisfy this equation as depicted in 
Figure 5.3, given that we control a one dimensional contact force in the 2 dimensional control space of the 
robot, any point over the line segment would satisfy the required velocity command.  

 

Figure 5.3: Transformation from the collision point space to the constrained nonholonomic output velocity 
for controlling the impact force response. 

 

The parameter  is then defined as a function proportional to the contact angle ,p γ  

 

where the and values could be in the range or it could be used as the intersection over thepmin pmax 0 1][  
actual feasible space of solutions with acceleration constraints. Herewith, imposing a behaviour in the robot 
that would align the perpendicular axis of the wheels to the collision vector  in order to cancel it, given that 
this would ensure the best controllability of such force. 

The final transformation to the robot control space is given by, 
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where , and obtained from the kinematic distribution of the bumper anda = 1  in(θ )(v /ω )b = s − β max max  
control point for the robot.  

In summary, we find the possible transformations to the control space of the robot as a state dependent line, 
depicted in Figure 5.4. Four examples of the output behavior in the robot based on four initial states  from a 

, , , and are depicted with the output behavior based on the0, ]ξ* = [ 0 0.5, ]ξ* = [ 0 1.0, ]ξ* = [ 0 1.5, ]ξ* = [ 0  
force of collision e.g., for the 50% of the maximum force the solution is found in the grey line. In these 
cases, the location on that line is defined by the parameter ​p​, which is directly proportional to the impact 
angle over the bumper surface of the robot. 

 

Figure 5.4: Control space transformation from a given impact force at a known location and its 
corresponding mapping to the non-holonomic space of the robot. e.g., the grey line in the center demarks the 
trade-off between linear and angular velocities where a collision with 50% of the maximum force would be 

found, for the four different cases of zero velocity to the maximum velocity. 

 

 

Calibrating Bumper stiffness-damping effect: 

Given the design of the bumper, its weight, structural constitution, and attachment to the rigid body of the 
robot it is expected that significant forces are absorbed by its flexible construction. However, accurate 

Page 25 of 71 

 



 
EU H2020 Research & Innovation – CROWDBOT Project ICT-25-2016-2017 
D3.4 Reactive Motion Planning 

 

measurement of the contact force becomes more challenging. To solve this, we proposed a training of the 
nonlinearities in the rigid body transformation for the bumper. To this end, actual collision forces were 
captured with an external F/T sensor as depicted below. 

 

 

Figure 5.5: Bumper stiffness-damping calibration process. Left: lateral view of the bumper with the location 
of the F/T sensor in reference to the bumper. Right: top view diagram of contact forces. 

 

Using a rigid body transformation one would obtain a significant error based on the actual location of the 
contact and the attachment of the bumper onboard, as depicted in Figure 5.5, where for a point (P1) with a 
small angle from the center of the axis ( ) the error is small (bottom figure), whereas for a a furtherγ 5= 1 °  
away point in the bumper (P3 at ) the nonlinearities render the error over 100%.γ 5= 4 °  

 

Figure 3.6.6: Sample data for contact force at the bumper perimeter for P1 which stands for 𝛾 �, and5= 1  
point P3 which stands for 𝛾=45�, with a height H1. 

To remove the effects of non-rigidity, and partial force transfer of the bumper from the measured values, a 
prediction model was developed based on a support vector regression (SVR) [Fan R.E. et al 2006], with the 
regression function defined as,(x)f  
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where the linear function of is a projection of the original input data into the feature space for,w b (x)φ  
dealing with the nonlinearity of the data, while keeping a simpler optimization problem of fitting the data. 
The prediction model is then dependent only on a set of support vectors  for the given training set)(αi

* − αi  
of ​m​ samples, a bias (​b)​, and a kernel function. For this application we have chosen a Gaussian kernel 
function   with as a hyperparameter.k = e− x −x /2σ| i j | 2 σ   

 

To train the SVR model, the set of  known forces is applied to the bumper at various locations as shown in 
Figure 5.5, using a second FT sensor.  Then, a one dimensional SVR is trained over the measured FT values 
from the onboard sensor for each of the needed data for estimating the contact force at the bumper surface Fx 
, Fy , and Mz. Using as predictors five axes of the F/T sensor , in here, weF x, F y, T x, T y, T z]x = [     ′  
neglected  as the force parallel to gravity in the current setting is minimally affected by external contactszF  
on the bumper. 

 

Assumptions for real time execution​: 

• The SVR model removes all non-rigidity effects from the sensor measurements, so we can consider 
the bumper as a rigid body. 

• Only pure force is applied at the point of contact. 

With the above assumptions, we can estimate γ from Fx , Fy , and Mz . The solution for force magnitude and 
contact angle is taken as, 

 

 

where the are the estimated values from the output of the trained SVR. Note that Fx and Fy at,F , Fx  y  M z  
the contact point and at the sensor are the same.  

 

By discretizing the bumper into 27 contact points, we gathered contact data in 2 sets with different maximum 
collision forces (0~100N) and (0~200N). Each collision sample contains 30 seconds of data recorded at 
400Hz. The total dataset contains 129.6K samples for each dimension in both sensors (Fx, Fy, Fz, Mx, My, 
Mz).  

The resulting SVR function for each of the dimensions of interests (Fx, Fy, Tz) contains 30.8K,14.7K, and 
29.9K support vectors, respectively. 
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Figure 5.6, shows a set of errors over the surface of the bumper for each of the three trained models, for a set 
of examples of the training dataset with the mean and standard deviation for each of the contact points.  

 

 

 

Figure 5.6: Error plot of estimated forces distributed over the bumper. From top down: Fx, Fy, and Mz, on 
the left with zero error at the black line, and standard deviation in blue. On the right, examples of the 

temporal response for the three trained models. 
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6. Experimental Evaluation 

6.1. Robots used for Implementation: 

6.1.1. Omnidirectional Robot: Ridgeback 
The Ridgeback is an omnidirectional robotic platform produced and sold by Clearpath Robotics. Thanks to               
its dimensions (960 x 793 x 296 mm) it can be used in classic indoor environments (houses, offices,                  
industrial and commercial buildings) as it can travel through standard 80 cm wide doors. Since the                
Ridgeback is holonomic thanks to its four Mecanum wheels with two controllable degrees of freedom of                
translation in the horizontal plane and one controllable DOF of rotation over the vertical axis, there is no                  
problem to follow directly a ( ) velocity command that would be generated by the MDS obstacle     , ,x* y* θ*            
avoidance algorithm. 

 

Figure 6.1.1 Ridgeback robot [Clearpath robotics ] used for omnidirectional validation of the modulated 
dynamical system, and the sensing-control loop implemented. 

 

In terms of sensors, a Velodyne LIDAR and two Hokuyo laser range finders are installed on the Ridgeback 
platform. An additional Realsense camera was installed for people tracking. Each Hokuyo sensor provides a 
planar 270-wide scan of the surroundings. As those sensors are set up back-to-back, there is no dead angle 
and a 360 scan can be obtained by merging data emitted by the two sensors, although they only scan in a 
single horizontal plane. Contrary to the Velodyne LIDAR which provides a 3D point cloud of the 
surroundings (with two dead areas respectively above and under the sensor). In Figure 6.1.1, the process for 
creating obstacle representation with this robot is depicted. 
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Figure 6.1.2: Mapping process for obstacle definition from onboard sensing data on the ridgeback. 

 
A summary of the collected sensors and algorithm execution is presented in Figure 6.1.3, which has 
developed for online evaluation and data recording. 

 

 

Figure 6.1.3 Data pipeline for the tests on the ridgeback robot. 
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6.1.2. Qolo Robot and Assistive Control 
In this section we introduce the robot Qolo, as the platform chosen for evaluation in real-crowd motions.                 
This robot's kinematics is a common 2 wheeled powered device, as any powered wheelchair, or 4 wheel                 
mobile device, or scooter. This design presents new challenges for real-time navigation around crowds as it                
is non-holonomic, therefore, it has less freedom to move in the space. 

 

 

Figure 6.1.4. Qolo robot used in CrowdBot project. Left: CAD of the robot with sensors, middle: robot 
profile with a full set of sensors installed, right: user driving the robot. 

The Qolo robot (depicted in Figure 6.1.4) developed by the University of Tsukuba is very much like a 
powered wheelchair, as it accomplishes the same task of transporting a person with lower-body impairment. 
such as spinal cord injury (SCI), while allowing the usage of their remaining motion capabilities in the upper 
body. In contrast to standing wheelchairs, no external power source is required for achieving the sit-to-stand 
or stand-to-sit transition [Paez-Granados D. et al 2018]. 

Another important consideration for this robot is motion constraint which plays a significant role where 
acceleration limits are strict for ensuring the safety of the user (preventing tip-over), similar to that of the 
robot Pepper. Moreover, the user interface and potentially the shared-control strategy are different in type 
and level of autonomy required. Some examples of these types of vehicles which are becoming popular 
worldwide as a last-mile mobility solution and short-mid distance commute proposals are standing scooters 
or smart scooters. 

In the subsequent section, we describe the hardware, and control architecture developed for the CrowdBot 
project. 

6.1.2.1. Hardware Architecture:  

The Qolo robot for the project follows the sensor recommendations given in CrowdBot Deliverable D6.2 
Robot Design Recommendations.  

There are three Intel RealSense D435, as well as, two 3D Lidar sensors Velodyne VLP16 are installed in the 
robot. Location of the RGBD sensors could be changed accordingly to the desired testing scenario. 
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Currently, two cameras are set forward and one looking backwards at the rear of the robot, as depicted in 
Figure 6.1.4.  

Qolo as a standing mobility device for spinal cord injury carries a person in the middle of the robot, 
therefore, it is necessary to use 2 lidars mounted in front and rear of the robot, as proposed in D6.2, for 
gaining full 360 view of the surroundings. The two Intel RealSense D435 cameras located at the front are 
placed 65cm above ground to give a combined field of view (FoV) of the sensors’ RGB (cameras) of 
approximately 138 degrees of the frontal area, as depicted in Figure 3.2, left side (blue FoV). While point 
cloud information from infrared sensors could provide up to 170 degrees of frontal FoV, as shown in the 
right side (red FoV) in Figure 6.1.5. As well the rear camera set at 35 cm above the ground can be used for 
detecting incoming people or for using the point cloud proximity data directly behind the robot, with 68 
degrees for camera FoV, and 89 degrees for proximity data. 

 

Figure 6.1.5. Sensors location in the robot Qolo, with frontal and rear RealSense D435 (blue and red) field of 
view, and front and rear Lidar in green. 

Moreover, we have included a frontal FT sensor (Botasys Rokubi 2.1) for contact detection attached to a 
bumper, which could be used for detecting small contact with feet or other surfaces, and potentially 
controlling for compliance in such scenarios. As a passenger carrier robot Qolo’s control interface is 
designed for forward motion, therefore, the sensor is placed in front of the robot with a protective bumper 
attached to it. The overall bumper weight is 1 Kg. Thus, for avoiding overload of the FT sensor (maximum 
measurement of impact force is 1KN, and torques up to 10 Nm), the bumper is placed with partial support to 
the main frame of the robot, as depicted in Figure 6.1.6 

 

Figure 6.1.6. FT sensor mounting and protective bumper around the robot with 33 cm in diameter and 20 cm 
in height, placed at 5 cm from the ground. 
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6.1.2.2. Control Architecture:  

We have followed a modular approach for distributing the computing power as proposed for the CrowdBot 
project robots where all the components of the control have been constructed with a ROS communication 
architecture so that it would be compatible with all the partners’ developed modules. 

 As depicted in Figure 6.7, the controller of the robot is executed from an embedded computer UpBoard 
Squared (intel Celeron 2.4Ghz), integrated within the exoskeleton structure, which handles low-level control 
and user interface inputs. Internal velocity control is handled between an embedded microcontroller and 
in-wheel motor driver. 

 

Figure 6.1.7: Overall control distribution with sensors, computing units and actuators. 

For the CrowdBot project, we have modified the standard version of Qolo by integrating sensing and 
computing capabilities for onboard autonomous control of the robot. For the integration of the lidars, we 
have set a second UpBoard computer which can run independently of the low-level controller for a 
distributed control architecture. This second computer is embedded in the lidar’s base for a compact 
configuration, equally an Nvidia Jetson AGX is installed in the rear of the robot with its own compact power 
source, for processing up to 2 RGBD sensing information and people tracking. 

 

6.1.2.3. Shared Control: 

Qolo as a standing mobility device aims to give hands-free control for people with mobility in their upper 
limbs (spinal cord injury up to the neurological level T4), to this end, we have developed an internal array of 
pressure sensors as a torso control interface. From this control interface, we use an intention recognition 
function that fits the input from the set of pressure sensors in the T-bar of the device and infers a desired 
linear [v] and angular velocity [w] of the user as control input [U], which is limited to the velocity of 
standard wheelchairs 1.5 m/s [Chen Y, et al. 2020]. 
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Figure 6.1.8: Diagram of control for the Qolo robot. 

 
Figure 6.1.8 summarizes the shared control architecture, where the user input is taken from the intention                
recognition algorithm and sets a desired motion [U]. The reactive navigation generates an output that would                
be consistent with avoiding obstacles [Y] while keeping the closest direction of motion to the one given by                  
the user . 
In the low-level control the robot command [Y] is taken and transformed by the inverse kinematics of the                  
robot to the motors command [W], which is then checked for acceleration and velocity limitations of the                 
actuators with a sigmoid function in case of exceeding limits. Finally the output [Wd] sets a desired velocity                  
for the internal velocity control of the in-wheel motors. 
 

6.1.3. Data Collection: 

For the current experiments the whole pipeline of sensing, detection, tracking, control and actuation is               
described in Figure 6.1.9. As well, the same architecture reflects the information recorded, as each yellow                
box represents a communication node in the ROS architecture.  
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Figure 6.1.9: Communication flow of the robot's sensing, perception, control and actuation signals for the 
entire pipeline of processes in the robot. 

 

Figure 6.1.10 Example of the pipeline used for algorithm evaluation, reducing to the required minimum 
components. 
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For each independent evaluation of the system specific sensor inputs and detection layers are considered or 
not for control purposes according to the objective of the experiment. Herewith, validating different 
applications of the algorithm and demonstrating its flexibility in terms of hardware, and sensing capabilities. 

 

6.2. MDS Simulation Experiments 

6.2.1. Simulation for a Non-holonomic robot with non-linear Model Predictive         
Control 

 

For this assessment we chose a set of moving obstacles (pedestrians) randomly located in a linear dynamical 
system pointing towards an attractor located at [4,5] from the robot's initial location, as shown in Figure 
6.2.3. The blue lines denote the vector field output from all possible locations within the simulated space, the 
modulated dynamical system of a linear DS pointing towards the attractor at (0,2). 

For testing we have selected the actual robot parameters of Qolo, so that we could observe what could be the 
output behavior in a real situation. The parameters are as follows: 

● Velocity constraints:  1.5 , 3.0]U max = [   
● Acceleration Constraints:  2.0 , 7.0]A max = [   
● Control frequency:  0 HzF control = 2  
● DS frequency:  0 HzF DS = 2  

A first evaluation is shown in Figure 6.2.3, with 4 dynamic obstacles emulating  pedestrians, and setting a 
minimum proximity to the boundary of the pedestrians to be 0.2 m, thus effectively enlarging their 
representation. 

 

 

Figure 6.2.3: Modulation of a linear dynamical system considering multiple obstacles and the desired final 
state of the robot including orientation. 

The results of the modulated velocity of the robot applied in simulation as in Figure 6.2.4 displays the 
trajectory followed by the robot and the difference in angular velocity from the desired one, which we 
conclude to be a consequence of the simulation parameters which try to follow real robot simulation with 
limits in acceleration and control delay thus such error would be induced. 
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Figure 6.2.4: Example of MDS-nMPC control for a non-holonomic robot given the previous scenario. Left: 
the trajectory performed, right: desired vs. executed orientation. 

The results in  this simulation of the real system implementation with constraints to the real values for 
controlling a nonholonomic robot display clearly that the method can handle dynamic obstacles without 
complete knowledge of their motion, rather by using the update given in position. However, some error in 
the orientation control is still found as some situations might find it infeasible to steer the robot as desired, 
which is true for any robot in real implementations. This result clearly states the real limitations of the robot 
to execute some trajectories, thus, help to design and understand its applicability. 

 

6.3. MDS testing on Omnidirectional Robot 
The performance of the proposed framework is evaluated on a mobile robotic platform (Ridgeback by 
Clearpath Robotics). Thanks to its Mecanum wheels, this platform is omnidirectional and can therefore 
follow any velocity command that would be generated by the algorithm regardless of its current orientation. 
As the motion planner does not work directly with 2D shapes but only with 2D points, it requires a [x,y] 
position as its input. The position of the center of the platform is used as a reference to locate the robot in the 
horizontal plane. As the Ridgeback has a rectangular shape with a half-diagonal of roughly 56 cm and to 
have a small security margin, the platform can be enclosed in a circle with a radius of 60 cm. To avoid 
collisions with obstacles even if the robot is only considered as a point, obstacles are therefore expanded by 
60 cm in all directions, as shown in Figure 6.3.1.  

 

In all scenarios, the robot starts with no prior knowledge about its environment. To get information about its 
surroundings, it uses two Hokuyo laser rangefinders (one at the front, one at the rear) and a Velodyne 
VLP-16 LIDAR. Data coming from these sensors is merged into a single planar scan of the surroundings. 
Sensor handling and processing is done with the Robot Operating System (ROS) that runs on the on-board 
computer [quigley 2009]. These scans are  used by a Simultaneous Localisation and Mapping (SLAM) 
algorithm which outputs a two-dimensional occupancy grid of the environment. 
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Figure 6.3.1: Implementation for the omnidirectional robot Ridgeback through coupling with standard grid 
maps and the robot representation. 

 

The experiments test the real-time avoidance of static and dynamic obstacles. We get closer to a real world 
application by introducing several obstacles in the environment of the robot as well as moving pedestrians. 
Pedestrians are detected with an Intel Realsense Depth Camera D435 installed at the front of the Ridgeback 
and informing a YOLO object detector [Redmon et al., 2016]. To ensure continuous tracking and position 
estimation once people have been detected, they are tracked with LIDAR data and a Kalman filter if they get 
out of the field of view of the camera. This detection runs at 7 Hz with a Tiny YOLO v1 object detector and 
an   2 2450 VPU, an accelerator for neural network workloads.ntel MovidiusI T M yriadM T M   

From the SLAM algorithm the occupancy grid is updated and as described in section 3.4 a continuous shape 
of the obstacles is generated for usage in the modulation of the dynamical system.  

In the current experiment, the objective was to assess how well the proposed framework can handle moving 
obstacles even if their velocity is not taken into account. At each time-step all obstacles are considered 
uniquely in the control loop, herewith, evaluating the reactivity of the algorithm to the changes in the 
environment perception. 
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Figure 6.3.2: Snapshots of the experiment with a single pedestrian detection and avoidance. 

 

Figure 6.3.2, shows an initial test with a single pedestrian for demonstration of the proper functioning of the 
entire pipeline of detection, tracking, and control. In this experiment, the robot is driven be a simple 
dynamical system towards the attractor (green dot demarcated in the bottom of figure, behind the pedestrian), 
as a proof of concept of the reactive behavior, the robot simply reacts to the obstacles in its path accordingly 
to a set safety margin. i.e., the only given knowledge to the robot is its surroundings within 5 m. 

In a subsequent test we evaluate the fusion of obstacles and the robot's response to abrupt changes in the 
scene, with two pedestrians. While the original flow leads between the obstacles (Figure 6.3.3, top left), after 
this gap closes (Figure 6.3.3, bottom left), the newly computed flow leads out of and around the concave 
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obstacle formed by the two pedestrians and the static obstacles (Figure 6.3.3 bottom left), however, as the 
pedestrians move away (Figure 6.3.3 bottom right), the the open path is immediately taken between the 
pedestrians. 

 

 

Figure 6.3.3: left: external view of the experiment setup with 2 pedestrians only, right: view from the robot's 
camera, and bottom: online representation of the current perception from the robot's local frame. 

 

As the frequency of the control loop is limited, in real-time experiments with sensing and actuation limits the 
robot may cross the boundary of obstacles if they move faster than the robot's sensing and actuation latency. 
It could also happen by the uncertainty of a SLAM algorithm which could render sudden changes in the map 
in unknown areas. To solve any possible entry of the virtual space of an obstacle, a practical solution was 
implemented as a repulsive velocity field which is not part of the main algorithm (green stream lines).  
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Figure 6.3.4: In this experiment, the robot adapts to dynamic obstacles, namely two pedestrians who block its 
path and follows a new flow leading around the composite obstacle (on the right). 

 

Figure 6.3.4 shows the experimental setup map and resulting velocity field leading towards an attractor, the 
robot (red dot with an arrow) starts inside the non-star-shaped obstacle (purple dots) and gradually converges 
to the attractor (green dot at the bottom left) by following the modulated velocity field (blue stream lines). 
The experiments demonstrate that the implementation can respond to and avoid such dynamic obstacles (in 
addition to static obstacles) in real-time and converge to the desired position. 

Through this experiment we validate the work of the algorithm in real-time robot operation following a                
higher-level set of commands created in this case by a simple linear dynamical system moving towards an                 
attractor, but which could be a path planner. In here, we validated that random motions from the pedestrians                  
would immediately be accounted for by the modulation of the entire vector field. Moreover, the space                
transformation for a concave (non-star shape) obstacle was shown to work as designed. 

As well, the results showed at some points the robot could enter the virtual space of the obstacles especially                   
in very close space where the reactivity is limited to the sensor's frequency. This is an important                 
consideration for real operation of mobile robots in crowded environments, as it calls for known operation                
conditions of the surroundings in order to understand what sensing capabilities the robot must have to                
operate on it. For instance, the sensing and actuation latency of the robot to operate in a human environment                   
should be lower than the human responsiveness frequency, and the operational velocity could be limited in                
accordance. 
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6.4. Redirecting Driver Support Experiments in the 
CrowdBot-simulator 

The RDS method has been implemented on the model of Qolo in the CrowdBot-simulator, to enable Qolo to                  
react to and avoid collisions with surrounding pedestrians. This section presents results of 1D-flow              
experiments with different densities and desired robot speeds. Example snapshots from these experiments in              
the simulator are shown in the figure below. 

 

Figure 6.4.1 Snapshots from the 1D-flow experiments with Qolo using the RDS method. The pictures in the                 
top row show the lowest density (0.2 p/m²) and the pictures in the bottom row show the highest density (1                    
p/m²) which have been tested. 

 

The experimental evaluation in the crowd simulator uses the architecture presented in section 6.2, based on                
the simulated lidar measurements of the virtual robot. In this set of scenarios we have evaluated the response                  
in the robot with different densities in a 1D flow crowd. The plot in the following figure shows the robot’s                    
time-averaged speed for each tested combination of crowd density and desired (nominal) speed commanded              
for the robot. 
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Figure 6.4.2 The robot’s actual speed as a function of the robot’s desired speed in the 1D-flow tests with 

different densities  (in persons per square meter). The plot shows the average values and standard deviationρ  
computed over several short trajectories per density and desired speed. 

 
It is visible that higher densities reduce the robot speed, which can be attributed to two effects. First, the 
entire crowd moves at lower average speeds when the density is higher. Second, the RDS method is forced to 
reduce the speed at higher densities since it happens more frequently that a pedestrian occupies at some 
moment in time a part of the area which the robot’s shape will traverse in the near future. 
 

6.5. Redirecting Driver Support evaluation in a sparse crowd simulation         
from real data 

 

In this section’s experiments, the agents’ nominal trajectories match real pedestrians’ tracked motions from 
the “Crowds-by-Example” dataset [Lerner et al., 2007b] (which served as the basis for the data-driven crowd 
simulation technique in [Lerner et al., 2007a]). Our simulation here thereby reenacts the original dataset’s 
crowd movement. Namely, every simulation agent’s nominal velocity is generated as the nominal 
trajectory’s velocity at the given time (yielding a feedforward term) plus a term which is proportional to the 
difference between the current position and the nominal trajectory’s position at the given time (i.e. a 
feedback term). Details follow below on the agent’s behaviour and control and how we configure the sample 
simulations underlying the evaluation. 
 
For the simulation experiments in this section, the robot uses the proposed method RDS for reactive collision 
avoidance inside a simulated crowd. The crowd performs reciprocal collision avoidance (also considering the 
robot) using ORCA [Van Den Berg et al., 2011] via the open-source library RVO2 [Van Den Berg et al., 
2016], whereas the robot reacts to the moving agents using the proposed method. For using ORCA, agents 
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perceive the robot as a finite collection of circles whose union’s outline tightly bounds the robot’s true 
capsule shape. Since agents need to know other agents’ most recent velocities to construct their own new 
velocity constraints according to ORCA, they compute the robot circles’ most recent velocities by 
transforming the robot’s most recent forward and angular velocity to the circle centers’ corresponding 
cartesian velocities. 
Additionally, as a baseline for the experiments, we evaluate ORCA for controlling the robot, herewith, 
comparing the effects on crowd motion and robot response between the two methods. 
 
We use ORCA as the baseline method for controlling the robot, even though it is non-holonomic and 
non-circular, whereas the original ORCA formulation only considers holonomic circular robots. Following 
the popular principle in [Snape et al., 2010] a solution to this problem is implemented by enclosing the robot 
in a single bounding circle and using ORCA to control this circle’s center, whose velocity has degree of 
freedom two (if it does not lie on the wheel axle). This control point coincides for simplicity with the 
reference point for RDS. It could be chosen differently, but in any case it needs to be in front of the wheel 
axle because otherwise the robot aligns backwards to straight nominal trajectories. This is of course not 
permissible when there is a driver on board. For the Qolo-robot, this leads to a particularly conservative 
bounding circle, since its shape extends mostly in the rear direction. 
 
The simulation uses ORCA for the agents and either ORCA or RDS for the robot to augment their 
behaviours due to the nominal trajectories with local reactive collision avoidance. This framework allows 
agents to handle perturbations to the original movements without colliding and then to return to their 
nominal trajectory due to the combination of feedforward and feedback control in the nominal command 
generation. Also, the nominal trajectories sometimes imply collisions, e.g. because the agents’ nominal 
radius (0.3 m) does not match every real pedestrian or because the circular shape cannot model shoulder 
turning in close interactions. 
 
The idea behind the experiments in this section is illustrated by Figure 6.5.1 The robot replaces one 
pedestrian and follows its trajectory, either using RDS or ORCA. For the quantitative evaluation in Table 
6.2, a variety of configurations is generated by replacing in each configuration a different pedestrian by the 
robot. We identify each sample configuration by the pedestrian to be replaced by the robot, termed as the 
representative pedestrian. Each sample configuration gives rise to three simulation cases which together 
provide the data to evaluate metrics for the sample configuration. The first case does not include the robot, 
whereas the second case replaces the representative pedestrian by the robot using the RDS representation and 
control law, and the third case does the same replacement but with the ORCA representation and control law. 

 
Figure 6.5.1 The tests framework incorporates real crowd recordings into the simulation. Each sample 
configuration has three corresponding cases, one without a robot (left), and two with the robot replacing a 
particular pedestrian, either with the RDS (middle) representation (green capsule) and control or the ORCA 
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(right) representation (big circle) and control. The ORCA representation’s circle must have its center in front 
of the wheel axle, which leads to an overly conservative size.  
 
The original recording’s data points that describe the representative pedestrian’s motion define the time 
window for the sample configuration’s three simulation cases. After this time window elapses, a simulation 
holds the nominal trajectories constant and terminates after an additional time window (20% of the first time 
window) in which agents have time to converge to their now constant nominal goal positions. 
 
The evaluation metrics follow below (in accordance with the consortium’s metric definitions). 

- Mean deviation . Quantifies the robot’s ability to track the nominal trajectory by the temporalΔ0
T f inal  

average of the robot’s distance from its nominal position. 
- Crowd time to goal ratio . Quantifies how much the robot’s presence affects theEt = T crowd alone

T crowd+robot
 

pedestrians’ time to converge to their goals. 
- Effect on velocity . Quantifies how much the robot’s presence affects the pedestrians’Ev = V crowd alone

V crowd+robot
 

velocities. 
- Neighbours’ time to goal ratio​ . Quantifies how much the robot affects theN ttg = T crowd

T robot neighbors  

reaching time for pedestrians that move in its vicinity. 
- Neighbours’ velocity​ . Quantifies how much the robot affects the velocity forN v = V crowd

V robot neighbors  

pedestrians that move in its vicinity. 
- Total number of collisions​ . Counts the number of collisions between the robot’s approximateC  

capsule shape and the pedestrians’ circle shapes.  
 
While the metrics  and  require a case with the robot and the same case without the robot as aEt Ev  

reference, the metrics , , and  are evaluated only and directly for a case with the robot. TheΔ0
T f inal N ttg N v  

Table 6.1 reports the evaluation of the above metrics in terms of average and standard deviation (except for 
the total number of collisions) computed from 430 sample configurations, comparing RDS and ORCA as the 
robot controller. A two sample t-test was used to compare the difference in the output behaviour of both 
methods, finding significant differences at the level (p<0,05) for the metrics of mean deviation, crowd time 
to goal ratio, effect on crowd velocity  and effect on neighbours reaching time .Ev N ttg   
 

Metric Mean deviation 
 ​[m]Δ0

T f inal   
Crowd time 
to goal ratio 

[-]Et   

Effect on 
velocity Ev  
[-] 

Neighbours’ 
time to goal 
ratio    [-]N ttg   

Neighbours
’ velocity 

[-]N v  

Total number 
of collisions 

[-]C  

ORCA 3.6 
2.6σ :   

0.999  
0.005σ :  

1.0034   * 
0.015σ :  

1.001   * 
0.014σ :  

1.06  
0.24σ :  

192 

RDS 2.9 * 
2.2σ :  

0.998  
0.005σ :  

1.0077  
0.014σ :  

1.007  
0.019σ :  

1.05  
0.24σ :  

0 

Table 6.1 The metrics evaluation compares ORCA and RDS as the robot controllers. Superior performance 
values are marked in bold. 
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In the first case, favoring RDS with a significant improvement of​ 19.7% (​in average) smaller deviations from 
the original path.Whereas perturbations to other agents were consistently smaller with ORCA, the difference 
in velocity and time to goal of the other agents is affected less than ​0.5%​. Moreover, the total number of tests 
that contained collisions with other agents was zero for the proposed RDS against 192 for ORCA for the 
whole set of 430 samples. Other metrics of effect on the robot and neighbours velocity showed no significant 
difference. 
 

 
 

Figure 6.5.2: On the left, box plot for the deviation from the original path (m) and on the right, the effects on 
the crowd measured by crowd time to goal (E_t), crowd velocity (E_v) neighbours-time-to-goal ratio 

(N_ttg), with significant differences demarcated (*) at the level p<0.05. 
 
 

6.6. RDS Experiments with Qolo 
 

Considering that Qolo is a person carrier robot, thus, the user would have its input directly to the robot for                    
motion control. Therefore, it is necessary to introduce a set of metrics to assess the level of assistance a                   
reactive navigation would provide to the driver. In here, we consider the driver to be a high-level planner                  
who makes the decisions for the long-term plan (such as, desired velocity, general direction of motion, and                 
goal), and compare how the designed algorithm performs for his/her assistance. 

 

6.6.1. Evaluation metrics for shared control:  

All metrics have been defined for the CrowdBot testings in D1.4, however, we define here the selected                 
metrics that could be applied for the current tests 

Agreement: ​We defined agreement in terms of the deviation of the direction of user’s commands from the                 
direction of the final shared control’s velocity, herewith, considering only the directional agreement and not               

magnitude, defined as, , where the normalized agreement at each time step is defined   greementa =  
t∑

N

i=0
∆ i

·∆t∑
N

i=0
ai i

           

as , for .ai = 1 − π
|θ(u )⊖θ(u )|i

h
i
r ( ) θ (u) = tan−1 v

w  
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where​ v​ and​ w ​are the translational and rotational velocities  ,  is the normalised agreement at [v w ]u˜ ai  
time step,  is the final output of the shared control or reactive navigation. N is the number of samplesu i

r  
available in which data from both the measured input of the user, coincide in time with  .  is the ui

h ui
r t∆ i  

duration of user’s input command .ui
h  

Overall Disagreement: ​The normalized disagreement between the user command and the robot’s execution             

is computed as the mean of the L2-norm of the command differences D =1/N - || for the test             ∑
N

i=0
|u| i

r ui
h     

interval. This measurement gives an insight into how the algorithm performs compared to the set desired                
motion of the user. Both normalized to the maximum linear and angular velocities. In here, || x || represents                   
the L2-norm of x.  

Assistance Contribution: ​The contribution C is calculated as C =1/N - ||/|| , over a finite         ∑
N

i=0
|u| i

r ui
h ||ui

h     

number of discrete samples N. Where the is the user command in the robot command space (linear and       ui
r             

angular speed),  is the user input.ui
r   

Fluency: ​We observe the fluency of commands of the user (temporal continuity) given that the reactive                
navigation is intervening with its desired motion, as a second reference measurement of the disagreement               

with the decisions of the assistive navigation. , where represents the user given       |u |F  = 1
N ∑

t N

t=t 0

1 −  t
h − uh

t−1   ut
h      

command at time t, and N the number of samples taken in the interval . to tt 0
 
N  

Risk: ​We first define the notion of distance to closest approach (dca), which is, at a given time, the minimum 
distance in meters between the robot and an agent on the crowd if their current velocity were constantly 
projected in a time window. If they will eventually collide if they do not try any avoidance maneuver, the 
time of closest approach (ttca) is the corresponding time in seconds, at which the collision happens. The risk 
is defined as the sum of the minimal ttca if dca is 0 at each time step. 

 if  dca , 0 otherwise)R = ∑
T robot

0
(1/ttcamin = 0    

Expected Severity​ : We define the severity derived from the previous risk definition including the current 

relative velocities of the agents:  /if  dca , 0 otherwise)SR = ∑
T robot

0
(v  / ttca2

relative × 1 min = 0    

Number of collisions: ​This metric simply counts collisions that occured in a scenario. Note that a collision 
is not necessarily dangerous, as a touch is already a collision. 

 

 

6.6.2. Interactions with one pedestrian and static environment 

This section presents experiments with Qolo using the RDS method as described in the respective theoretical 
section in this document. The experiments here demonstrate how the RDS method avoids collisions in basic 
interactions with one pedestrian and a static environment. First, a description of each experiment with motion 
and command plots as well as their interpretation are given. Finally, the Table 6.2 gives a quantitative 
evaluation of the metrics from the previous section for the four described tests. 
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Case 1: Overtaking a pedestrian 
The Figure 6.6.1 shows an overtaking maneuver which represents the basic idea behind this test, in which a 
pedestrian walks straight forward and the driver with Qolo approaches from behind and overtakes the 
pedestrian. 

 
Figure 6.6.1: Snapshots of one of the experimental evaluations for overcoming a pedestrian. 

 

 
Figure 6.6.2 Test overcoming a pedestrian. On the left trajectories with color indicating time, becoming 
darker over time (as the scale on the right indicates). For two selected instants in time, the robot’s shape 

(blue) and the pedestrian’s shape (green) are drawn. On the right, the nominal linear and angular velocity 
commands over time (top and bottom, respectively, black) are transformed into corrected commands by RDS 
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(red). 
 
The Figure 6.6.2 shows the estimated trajectories for this test (where the direction of motion in the plot on 
the left is from right to left). It can be seen in the top right plot in Figure 6.6.2 that RDS decelerates when 
Qolo approaches the pedestrian while the nominal linear velocity command remains constant. Subsequently, 
the incoming nominal commands step between zero and constant high values. This period, wherein the 
acceleration constraints govern the output command, is followed by a period where again the constraints for 
collision avoidance become active (around t=10s). It can be seen from Figure 6.6.2 (left) that Qolo is at this 
point again closer to and moving towards the pedestrian. Then, RDS initiates a left turning motion, as the 
bottom plot in Figure 6.6.2 (right) shows, since the corrected angular velocity becomes positive while the 
nominal angular command is zero, which would keep moving the robot straight forward. Thus it can be seen 
also in Figure 6.6.2 (right) that the method assists the driver to avoid the collision and successfully overtake 
the pedestrian towards the end of the time window. 
 
Case 2: Backward crossing a pedestrian 
As Figure 6.6.3 shows, in this test Qolo is driven backwards into a crossing pedestrian. 
 

 

 
 

Figure 6.6.3: Snapshots of one of the experimental evaluations of backwards driving and intersecting a 
pedestrian. 
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Figure 6.6.4 Test driving backwards towards a pedestrian. On the left, their shapes (blue capsule, green 

circle) are shown for two exemplary time instances. On the right, the nominal linear and angular velocity 
commands over time (top and bottom, respectively, black) are transformed into corrected commands by RDS 

(red). 
 
It is visible in Figure 6.6.4 (left) that Qolo and the pedestrian’s trajectories meet such that it is rather 
ambiguous who will pass first (i.e. the crossing order). Namely, the plot displays their shapes around the time 
instance when they meet, where the pedestrian is only slightly ahead of Qolo. The top right plot in Figure 
6.6.4 shows that RDS subsequently corrects the nominal linear velocity command to decelerate Qolo and 
consequently Qolo gives way to the pedestrian. At the same time, the corrected angular velocity initiates a 
right turn such that the capsule’s cap rotates away from the pedestrian and leaves more space to pass. After 
crossing the pedestrian, Qolo resumes the straight motion in the original direction.  
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Case 3: Forward crossing a pedestrian  
 

 
Figure 6.6.5: Snapshots of experimental evaluations for forward driving and intersecting a pedestrian. 

 
Figure 6.6.6 Qolo test driving forward into a pedestrian. Their shapes (blue capsule, green circle) are shown 
for two exemplary time instances. 
 
As Figure 6.6.5 shows, in this test Qolo is driven forward into a crossing pedestrian. As in the backward 
crossing test which was described earlier, Qolo gives way to the pedestrian, whereas here, the anticipated 
crossing order is less ambiguous, as the first snapshot of their shapes in Figure 6.6.6 (left) shows. The top 
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right plot in Figure 6.6.6 indicates how RDS makes Qolo decelerate and the bottom plot shows at the same 
time a deflection by a right turning maneuver. Qolo’s trajectory also indicates this rotation which can 
facilitate passing behind the pedestrian and reduce the linear deceleration necessary to avoid the collision. 
The direction of the rotation is different from the backward crossing case above and corresponds to a more 
time-efficient maneuver, as it does not require to stop during the maneuver. The superior navigation 
performance by RDS in this example can be attributed to the fact that the anticipated crossing order is more 
clearly pre-determined in this example. After passing behind the pedestrian, the driver brings Qolo again on 
the original course. 
 
Case 4: Navigating clutter corridor 
 

 

 
Figure 6.6.7  Qolo is shown, driving in the corridor in which the related test is performed. 
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Figure 6.6.8 Qolo drives through a narrow corridor and avoids obstacles using the RDS collision avoidance 
system. On the left, its trajectory is shown by the swept circle whose color encodes time (yellow-red, as the 
right scale shows). 
 
As presented in Figure 6.6.8 (left), pedestrian detections occur at two (static) locations (indicated by triangles 
encoding time similarly). The later pedestrian detection and Qolo’s shapes (green circle and blue capsule, 
respectively) as used by RDS are shown for two exemplary time instances. Additionally, RDS retrieves the 
raw scan points (from the two onboard LIDAR sensors) and treats them as static obstacles. They are shown 
for two exemplary time instances (green points). 
 
The constraints for collision avoidance become active as Qolo gets closer to the first obstacle (which is also a 
pedestrian detection, visible in Figure 6.6.7 close to the wall on Qolo’s left in the direction of travel). First, 
as the top right plot in Figure 6.6.8 shows, RDS decreases the output linear velocity (around t=4 s) and then 
deflects the motion to the right as the bottom plot shows (until t=7 s). Then the angular acceleration 
constraint becomes active and slightly delays the rotation in the opposite sense which would align Qolo 
again with the corridor. Therefore, Qolo moves towards the wall on its right and RDS decelerates the linear 
velocity consequently until the alignment is complete. At this point (around t = 10 s) the linear velocity can 
increase again (adhering to the acceleration constraint) whereas counter-clockwise rotation is now 
constrained to prevent Qolo's tail from hitting the wall to its right. 
 
As Qolo approaches the second obstacle (a pedestrian detection, visible in Figure 6.6.8 (left) close to the wall 
on Qolo’s right), the linear velocity is constrained again and RDS also initiates a left turn deflecting the robot 
to avoid the obstacle (around t=12 s). The subsequent navigation is then similar again as after avoiding the 
first obstacle, i.e. the angular acceleration constraint becomes active again and it thus requires some time 
until Qolo is aligned again with the direction of travel along the corridor. 
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Quantitative Evaluation 

For the tests described above, Table 6.2 presents a quantitative metrics evaluation, where the definitions for                
the metrics are given in Section 6.6.1. 

Metrics Case 1: 
Overtaking 
a 
pedestrian 

Case 2: Backward 
crossing a 
pedestrian 

Case 3: Forward 
crossing a 
pedestrian 

Case 4: Navigating 
Clutter corridor 

Linear Velocity 
Difference [%] 

40.78±34    25.72 ±25.1    22.4±25.4 62.81 ± 20.77 
 

Directional 
Agreement [%] 

91.11±6.4    89.19±9.8    87±9.9 79.87 ± 10.07 

Disagreement [%] 65.57±30.6    48.61±37.6    57.82±34.2 88.42 ± 28.9 

User Fluency [%] 95.83 
 

   98.25    97.95 
 

97.42  

Autonomy 
Contribution [%] 

55.28    45.44    48.85 
 

77.86  

Minimal Distance 
Obstacles [m] 

0.32   -0.08  0.011 0.027 

Risk  0.23 60.01 126 13.34 

Expected Severity 0.067 16.915 154 0.095 

Number of Contacts 0 1 0 0 

Table 6.2 The displayed metrics provide a quantitative evaluation of the RDS collision avoidance method for 
the four basic tests with one pedestrian and a static environment. 

 
Conclusion 

For the above basic interactions between Qolo and a pedestrian in a static environment, the functionality of                 
the RDS approach to collision avoidance has been demonstrated. In all cases, the collision avoidance system                
decelerated or deflected the robot and thereby ensured collision-free motion. In all the cases except in Case                 
2, even the robot’s capsule shape approximation maintained a positive distance to other shapes (as the                
minimal distance values in Table 6.2. indicate). However, as the capsule shape is rather conservative, also                
the Case 2 did not exhibit any physical collisions, rather a virtual intersection between the representative                
shape of the robot and obstacles, in this case, due to the implemented acceleration constraints and a small                  
latency in the sensing pipeline. In terms of shared control for the current set of tests, the responses in user                    
fluency ​(over 95%)​, shows that the driver was consistently leaving the maneuvering to the autonomous               
system (validated with over ​45% contribution in all tests and disagreement between ​48% and ​88% ). These                 
results validate the intention of the experiment of leaving the reactive control to the proposed RDS method,                 
while a high-level planner (driver) only gives a general intention of motion without worrying about the                
environment, as it is desired for a crowd situation. 
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6.6.3. Crowd Evaluation with preliminary RDS version 

 

To use object information directly from sensor data without introducing any latency or potential for missing                
out object parts during further processing, the current implementation creates a circle and corresponding              
constraints for each measured point provided by a planar laserscanner. 
In our case, the shape of the robot, Qolo, is approximated by two circles to take into account the elongation                    
from the back to the front. as shown in Figure 6.6.9. 

The implementation uses a geometric algorithm to solve the quadratic program at the core of the RDS                 
method, which is also being used in the ORCA method [Van Den Berg et al., 2011]. Besides being efficient                   
on small-dimensional problems like this one (which is in 2D), its advantages include that it converges in a                  
finite number of iterations, which is desirable to ensure real-time execution, and that it is simple and rather                  
easy to implement.  

Our implementation of the method on Qolo uses two circles (as depicted in Figure 5.4), which are centered at                   
the LIDAR sensors, to approximate the robot’s shape. This allows the robot to move closer to an object than                   
the distance where the LIDAR sensors can still perceive it reliably. 
The parameters which we have tuned in the tests are: 

● Robot shape (circles’ radius): based on sensor's accuracy (0.3 m ~ 0.6 m) 
● Minimum clearance to obstacles imposed via the constraints: based on the robot's control latency              

(0.03 ~ 0.1 m) 
● Maximum velocity towards obstacles as a function of their distance imposed via the constraints: (0.0               

m/s ~ 0.3 m/s) . 

 

Figure 6.6.9: Implemented representation of the robot Qolo in the 2D spaces for the preliminary 
assessments in real crowds. 

We have conducted two sets of pilot tests to assess the shared control and reactive collision avoidance                 
system. The first set of tests were conducted in an enclosed lab space, with a set of circuits. The second tests                     
were done in a public corridor (140 m long), highly frequented by students, at EPFL (estimated 0.2 to 0.8                   
person per square meter at peak hours).  
Tests conducted in an enclosed space were meant to allow us to tune the control system’s parameters such as                   
to maximally prevent collisions before deploying the robot in the real pedestrian environment. While              
obstacle avoidance is our priority, we retained tuned parameters to maintain the robot’s ability to maneuver                
between objects according to the driver’s commands.  
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6.6.3.1 Laboratory Assessment 

Indoor testing was performed for analysis of the behavior of the sensor and robot projection to a single plane                   
and tuning parameters in the reactive navigation, such as, permitted proximity to the obstacles, uncertainty               
error to sensor's proximity, acceleration constraints, and user preference. To this end, a set of 2 static                 
scenarios in the laboratory were used as shown in the figure below.  
 

 
 

Figure 6.6.10: Diagram of evaluation scenarios for the lab environment. 
 
Case 1: Wall Test 
In the situation depicted by Figure 6.6.11, the collision avoidance system maintains a minimum clearance               
between the laserscan points (yellow) and the two circles, which approximate the robot’s shape. The driver’s                
command points forward as indicated by the velocity vector for a fixed point (blue, drawn from the fixed                  
point) and is modified by the collision avoidance system to yield a vanishing actual velocity command vector                 
(green). 

 
Figure 6.6.11: Obstacle clearance test in the enclosed space. 

 
To ensure collision avoidance, we have first tuned the front shape’s radius and the minimum clearance from                 
obstacles as imposed via the constraints. We have set the parameters for the front circle’s radius to 0.4 m                   
(and for the rear circle’s radius to 0.3 m) and the minimum clearance to obstacles to 0.1 m. With these                    
values, the collision avoidance system makes the robot stop at a distance of around 0.4 m from a wall in front                     
(as Figure 6.6.11 shows), where the distance is measured between the front of the wheels and the wall.  
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Figure 6.6.12: The chosen (shifted and scaled) square root function which limits the velocity towards objects 

dependent on their distance. 
 

Further, we have set the function which bounds the velocity via the corresponding constraint to be the square                  
root function (scaled by a factor of 0.5 m^(0.5)/s and shifted by the found clearance value of 0.1 m), as this                     
achieves a constant deceleration profile (with a deceleration of 0.125 m/s^2) when approaching a wall.               
Figure 6.6.12 shows the resulting function for the permitted velocity towards an object dependent on its                
distance to the robot. In the framework of the velocity obstacle formulation, this feature corresponds to                
linearly increasing the value for the time horizon, which is also called the (minimum) time-to-collision,               
dependent on the proximity to the object when constructing its velocity obstacle. 
 
Case 2: Static obstacles circuit 
 

 
Figure 6.6.13: Circuit test in the enclosed space. 

 
In this test the system’s ability to pass through narrow passages was evaluated. The collision avoidance                
system assists the driver to navigate the test circuit as depicted in Figure 6.6.13. Here, we have reduced the                   
parameter for minimum clearance to obstacles to 0.05 m as this helps with navigating in narrow spaces,                 
herewith allowing the driver to control contact with obstacles at very low speeds (< 0.11 m/s).  
We have observed that the driver can pass among the obstacles through the targeted passages while the                 
system deflects and turns the robot away from obstacles.  
 
The normalized disagreement between the user command and the robot’s execution was measured to be               
30.5% ± 30.11. This measurement gives an insight into how the algorithm performs compared to the set                 
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desired motion of the user. Detailing the difference in commands for heading angle and linear velocity we                 
found that angular velocity observes an influence of 14.95% ±19.61 compared to a 23.75% ±25.78 for the                 
linear velocity. This shows that the algorithm corrects more the linear velocity over the heading angle, which                 
is the desired behaviour for following the user intended motion. Finally, the overall contribution of the                
reactive navigation for performing the circuit has been computed to be C = 33.83% ± 30.67. This result                  
highlights the assistance provided by the reactive navigation in the driving task during the circuit. 
 
Based on the tests, we found that the best parameters were those described in the table below, for the reactive                    
navigation algorithm usage for crowd navigation. These are the parameters which we plan to use for further                 
shared navigation user-study to be performed by volunteer participants at EPFL open crowd of students in                
the corridors on campus, as approved in the experimental protocol EPFL HREC-032-2019. 
  

Constraint type Value 

Clearance to obstacle 0.05 [m] 

Absolute Clearance 0.1 [m] 

Obstacles uncertainty (based on sensor’s error) 0.05 [m] 

Velocity (linear and angular) 1.0 [m/s], 1.03 [rad/s]  

Acceleration (linear and angular) 1.0  [m/s^2], 1.5 [rad/s^2]  

Table 6.3: Constraints set for shared control tests in real crowds. 
 

 

6.6.3.2 Crowd Testing  

The second set of tests were conducted in a corridor of EPFL which is used on a regular basis by students to                      
move from one classroom to the other. In the current test, the robot was tasked to travel in the corridor while                     
students would also walk (a real crowd). 
We picked a time period where the corridor was moderately crowded, it was observed from 0.2 to 0.8 person                   
per square meter (ppm), with ​sparse crowds moving in ​one dimensional flow​. During these tests, we                
encountered two situations: first, the robot was ​moving in the same direction as the flow (scenario 1.3 from                  
D1.1), and second, the robot was ​moving opposite to the flow in a 2D crowd ​as in scenario 2.1 from D1.1.  
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Figure 6.6.14: Plan of the corridor of 140 m where crowd tests were performed at EPFL (highlighted in 

green in the top picture). In the bottom a simple diagram of the task. 
 

This experiment followed the guidelines of the approved experiments by the ethical committee at EPFL,               
which established a designated area as shown in Figure 6.6.14 (a long corridor where crowds of students are                  
common during the break in-between two lectures). Signs displays were placed in the corridor to indicate                
that an experiment was performed and to inform passers-by that all data collected from the robot would be                  
stored on EPFL's designated computer and follow Data Protection Law of Switzerland. From this test, data                
from on-board RGB-D camera and laser scanner as well as an external static camera were recorded for                 
performing the post-analysis. 
The current tests aimed to estimate the level of assistance that is provided by the navigation algorithm to the                   
driver, and the level of agreement (or disagreement) that the driver would have from the executed motion by                  
the robot.  Therefore, we evaluate the shared control metrics proposed in D1.4 and presented in section 6.6.1.  
Within the crowd test we have taken 3 cases to highlight the differences in the algorithm contribution to the                   
navigation. 

● Case 0: No crowd, moving parallel to the wall. 
● Case 1: Qolo moving with a 1D flow. 
● Case 2: Qolo moving opposite to a flow, in a 2D flow. 
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Figure 6.6.15: Scenarios taken from a static camera. From top to bottom: cases 1, 2, and 3 

 
In each of these scenarios (depicted in Figure 6.6.15) a sample of 20 seconds of data was isolated out of the                     
whole recording (30 minutes of data) for matching the proposed evaluation scenarios in D1.1, namely 1D                
flow motions and 2D flow motions. Out of these, we computed the measurements of assistance provided by                 
the reactive navigation algorithm, and the level of agreement to the user input. 
 
The first baseline scenario without a crowd (Figure 6.6.16) shows single pedestrians and static obstacles               
(walls) as the only constraints to the motion of the robot, thus, nominal commands by the driver are followed                   
closely (Figure 6.6.16 bottom). 
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Figure 6.6.16: For the Case 0 (no crowd, only a few single pedestrians), the top plots are snapshots showing 
the laser-scan points, the nominal and the corrected velocity (mapped on an example point on the robot), and 
the robot’s approximate shape. The bottom plots show the nominal and corrected linear and angular velocity 

commands over time. 

 

The second case of evaluation was within a one-dimensional crowd following the flow, in this case, the 
commands (as shown inFigure 6.6.17), are significantly deviating from the driver's in consequence of the 
crowd moving around the robot. 
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Fig 6.6.17: For the Case1 (Qolo moving with a 1D flow), the top plots are snapshots showing the laser-scan 
points, the nominal and the corrected velocity (mapped on an example point on the robot), and the robot’s 

approximate shape. The bottom plots show the nominal and corrected linear and angular velocity commands 
over time. 

Finally, the third case of 2D flow of the crowd, leads to a set of corrections (Figure 6.6.18) with higher 
variability than the previous cases, as the pedestrians in the crowd appear more suddenly in the robot's way.  

 

 

Fig 6.6.18: For the Case2 (Qolo moving opposite to a flow, in a 2D flow), the top plots are snapshots 
showing the laser-scan points, the nominal and the corrected velocity (mapped on an example point on the 

robot), and the robot’s approximate shape. The bottom plots show the nominal and corrected linear and 
angular velocity commands over time. 
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The results as described in the table below, highlight an increment in the autonomy contribution to the 
navigation from the algorithm between the 3 scenarios, from 16.56% at case 0 to 35.57% in the bidirectional 
flow. As well, we can highlight the fact that linear difference was higher than angular difference for all three 
cases, meaning that the algorithm performs as designed, following as closely as possible to user heading 
angle (the desired direction of motion given by the drive). 
Finally, the disagreement of the velocity vector with the user input increases from 17.9% to 34.58% from                 
case 0 to case 3. Nonetheless, the fluency of the user's commands is not affected, remaining between 93% to                   
98% in all cases. This highlights the fact that the user effort in navigation is not increased although the                   
robot’s autonomy is increasing. 
 

Measurements Case 0: No Pedestrians Case 1: 1D Flow:  Case 2: 1D Flow - contrary 

Linear Velocity 
Difference [%] 

16.07 % ± 14.04 18.8 % ± 14.9 30.34% ± 14.5 

Directional 
Agreement [%] 

5.28% ± 8.2% 7.9% ± 8.6% 13.28% ± 14.37% 

Disagreement [%] 17.9 % ± 15.15 21.17 % ± 16.3 34.58 % ± 17.79 

Autonomy 
Contribution [%] 

16.56% 21.26% 35.57% 

User Fluency [%] 93.3% 98.3% 98.8% 
 
 

Minimal Distance 
Obstacles [m] 

0.72 0.29 0.11 

Number of 
Contacts 

0 0 0 

Table 6.4: Results of the 3 testing scenarios in real sparse crowds for shared control metrics. 
 
In Figure 6.6.19, we depict the closest distance to the robot for each of the scenarios above. Showcasing the                   
tests in the public corridor where the driver could navigate through the crowd, with the collision avoidance                 
system preventing running into pedestrians, with a zero collision count in all scenarios. 
Compared the the single pedestrian scenarios in the tests on the previous section, we observe a clear decrease                  
in the autonomy contribution, which reflects that the driver was actually giving instructions in the trajectory                
to follow during the experiment, however, there is not an observable decrease in the fluency which suggest a                  
good compatibility with the driver intentions 
Over all no contact or collision was registered either virtually (robo's representation to obstacles) neither               
physical in any of the tests, although, pedestrians obviously contribute to collision avoidance themselves.  
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Figure 6.6.19: The closest distance between the robot’s bounding shape and scanned points (due to 
pedestrians and static obstacles) is shown for the three cases. 
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6.7. Compliance Control Experiments with Qolo 
 
Evaluation of the proposed compliance modulation of the collision forces are presented here in two folds. 
First assessment of the accurate online estimation of the collision forces is presented. Subsequently, a simple 
scenario of collision was tested with multiple initial states of the robot with an unexpected pedestrian 
(occluded by an obstacle) coming in the way of the robot, as shown in the figure below. 
 

 
Figure 6.7.1: Diagram of evaluation scenario for collision and compliant response in the mobile robot. In the 

left, the initial state, and in the right the expected collision, at a set velocity. 
 
 
Initially the results shown in Figure 6.7.2, present an example of the scenario where the robot is driven at  a 
constant speed of , and a pedestrian abruptly appears in its way, creating a collision.5 m/s , ω  rad/sv = 0  = 0  
between the feet and the bumper of the robot. For this test the maximum acceptable collision force is set to 
be 45 N, minimum known pain threshold for the legs (shin) in human adults [Park, M.Y., 2019]). And 
intentionally set the robot's desired velocity constant during 16 s, thus, forcing multiple collision samples. 
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Figure 6.7.2: Experimental result for collision at 0.5 m/s with the robot and a pedestrian in laboratory 

settings. 
 

The results in Figure 6.7.2  present a mean peak force for the trials of (56 N ± 3.8 N), which is approximately 
11 N higher than the set limited value. In Figure 6.7.3 we zoom into the reaction of the controller at a single 
collision, depicting only 4 s of the interaction. Here, full velocity achieved at t=1s, and collision started at 
t=1.5s the maximum force observed is of 58N, which exceeds the set value by 13 N. We consider this result 
as part of an offset in the maximum contact force from the control loop delays and sensing delays. 

 

 
Figure 6.7.3: Single contact collision data with force magnitude, collision angle and the input commands and 

output resulting velocity on the robot control space ( ),v ω  
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Figure 6.7.4: Timelapse of the collision with the robot and its reaction 
 
 

The second experimental evaluation was recorded to observe the collision force variation at different robot 
speeds:  , with . A set of 3 tests per initial state (desired velocity in.25, 0.5, 0.75, 1.0 m/s v = 0    ω  rad/s = 0  
the robot), was used to get statistical data on the test. 
The results are depicted in Figure 6.7.4, where we found that collision forces remain in the same range for all 
initial states, between 53N and 56N for a set value of 45 N limiting collision force. Herewith, we can 
conclude that the compliance behavior performs as designed, limiting the output force during collisions with 
little variation from the velocity of the robot at the moment of collision. 
The results as depicted in Figure 6.7.5 shows an error in the exerted forces with a steady state error between 
9 N​ upto ​15 N, ​which could be derived from control delays, and wheels slippery contact. 
 

 
Figure 6.7.5: Mean collision forces error with respect to the set limit contact force for a set of initial state 

conditions in the robot varying the desired velocity prior to collisions. 
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