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Executive Summary
Work Package 3 of the CrowdBot project focuses on navigation. Half of our prototype crowdbots (Pepper
and cuyBot) are designed to be fully autonomous and so the navigation algorithm must deal with both global
and local aspects of planning. However, the other two crowdbots (smart wheelchair and Qolo) are designed
to support human users improving their quality of life. In this case, the human’s intention is the high-level
global navigation plan, but they may need assistance in planning and executing the local navigation at the
operational level. Deliverable 3.6 focuses on the paradigm where the user’s continuous control input is safely
blended with the robot’s local planner in a process we call Shared Control. Within Work Package 3 of the
CrowdBot project, the UCL team has concentrated on refining two primary algorithms for shared control
(probabilistic dynamic window approach and user intent modelling), both in terms of gathering data in real
pedestrian environments and improving performance and user experience in simulation.

Probabilistic shared control using the dynamic window approach and generalised velocity obstacles
(PSC-DWAGVO) was selected as an approach due to identified weaknesses in conventional DWA
algorithms when it came to avoiding moving pedestrians. Combining the velocity obstacle paradigm with
PSC allows the wheelchair to select a trajectory that is most likely to satisfy the user and simultaneously
preserve safety, without the risk of freezing in place due to a rigid avoidance strategy. In order to support the
development of this algorithm, a large, novel dataset of wheelchair-pedestrian interactions was collected,
filling a vital gap in the available data. This dataset was used to create a simulated testing environment with
realistic ‘pedestrian’ agents that allows the algorithm to be rapidly iterated and tested in the absence of
human participants (this has become of even more crucial importance during the current pandemic).

Section 2 gives an overview of our custom built smart wheelchair platform and other shared control
wheelchairs in the literature. Then, the motion planning and blending strategy is discussed in the Related
Work Section 3. First, to give background context, the standard Dynamic Window Approach (DWA) motion
planning algorithm is presented followed by the Generalised Velocity Obstacles (GVO) extension for
environments with moving obstacles (crowds of people in our case). We then explore the baseline linear
blending strategy and its extension to Probabilistic Shared Control (PSC), which formulates blending within
a statistical framework and sets the tone for our approach.

Shared control navigation using Probabilistic Shared Control (PSC) is presented in Section 4. Our proposed
model is a hierarchical framework for collision avoidance, which treats static and dynamic obstacles
separately thus allowing for more flexibility and transparency in control, whilst improving computational
performance. The first layer runs DWA to construct sets of Reachable Admissible Velocities (RAV), the
second layer formulates Generalised Velocity Obstacles, and the final layer performs the actual blending
using PSC, resulting in the final trajectory output.

The above-mentioned model is implemented and validated in a Unity3D ROS simulation environment
containing the smart wheelchair platform with static and moving obstacles. All sensors’ characteristics apart
from the RGBD camera are modelled. In our experimental results, we focus on three core metrics, which
stem from Deliverable 1.3 namely: number of collisions, task completion time and “agreement” (between the
user and the robot). Our results show that the proposed approach is a good step towards enabling a shared
control wheelchair to navigate safely in a highly dynamic and crowded environment.

For 1D and 2D flow of crowds, in our simulated PAMELA facility, results indicate that in a crowd-robot
navigation task, our shared control navigation strategy has a small, non-significant, effect on the crowds.
This is expected as the current strategy does not aim to minimize such effects.
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Section 5 discusses a comparison between our real-world wheelchair-crowd experiments and simulated
experiments at PAMELA. Here, the wheelchair was driven manually without shared control and we show
that the simulator does reproduce the real-world experiment well.

Section 6 details how we can learn to predict user intent (as represented by their joystick input) from the
available visual input. Using data from healthy volunteers, a nonlinear mapping was learned between RGBD
camera sequences and user intent as approximated by joystick inputs. A user model of this kind may in
future be used to reconstruct how a user with a condition such as hemineglect (which prevents them from
perceiving one half of their visual field) would behave if they had access to their unimpaired senses,
information which is required for shared control.

1. Introduction
Being able to move freely is key to independence and quality of life. While wheelchairs provide a mobility

solution, current designs may not be suitable for people with very high-level motor impairments, especially
when combined with sensory and / or cognitive impairments. To address these people’s mobility needs,
researchers have been working on ‘smart wheelchairs’. A smart wheelchair is typically made of a standard
powered wheelchair and a collection of sensors for perception purposes. It is able to provide driving
assistance to the user by planning and following a collision free path either globally or locally [1]. Based on
the level of autonomy, smart wheelchairs can be divided into two categories: fully autonomous [2], [3] and
shared control (semi-autonomous) [4]–[6]. Fully autonomous wheelchairs are effective in achieving
high-level goals for indoor and outdoor navigation [7], [8]. The user only needs to indicate their preferred
destination and the path planner will plan and navigate the wheelchair to the place without collision.
However, this type of operating mode ignores users’ capabilities and their short-term intentions. In addition,
Biddiss et al. (2007) indicated that most end-users do not want to feel useless and expressed their desire to
retain as much control as possible [8]. As a result, the control paradigm for shared control wheelchairs could
potentially be appreciated by more users due to its collaborative characteristic.

While the research on shared control wheelchairs spans decades there are still challenges in developing
navigation strategies for dynamic environments such as crowds. In particular, we have focused on addressing
the weaknesses of existing Dynamic Window Approach (DWA)-based shared controllers, namely their poor
performance in areas containing many moving obstacles. In support of this, we have begun collecting data on
how human pedestrians react in the presence of an instrumented wheelchair, filling a crucial gap in the
existing body of data.

In parallel, we have collected data on how unimpaired users control the wheelchair in realistic crowd
scenarios. This has allowed us to begin learning predictive models for user intent based on the sensory input
available to the smart wheelchair (in particular, visual input captured by an RGBD camera). This aims to
address a vulnerability of shared control methods where meaningful assistance cannot be provided in
circumstances where the user’s intent is unknown (such as in areas that the user is unaware of due to sensory
impairment).

2. Shared Control Wheelchairs
A shared control wheelchair is normally built from a standard powered wheelchair with a collection of

sensors. It has the ability to sense its environment and make collision-free actions based on the user’s input.
In general, a shared control wheelchair consists of three essential components: The user’s input, a
motion/path planner and the control strategy.
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In terms of the control strategy, shared control wheelchairs can mainly be divided into two categories. The
first category puts the user at the tactical level: Escobedo et al. (2013) and Tomari et al. (2012) adopted a
hierarchical framework where the user was in charge of high-level tasks such as choosing a desired
manoeuvre whilst the wheelchair took control of the low-level tasks [9], [10]. The user could intervene in the
autonomous process by switching the operating mode. Similarly, Simpson et al. (1999) proposed an
automatic adaptation strategy, where the motion planner can automatically select the correct operating mode
[11]. However, this strategy only assists with driving in specific, predefined scenarios and may not be suited
to dealing with uncertainty.

An alternative control paradigm, where the user is considered at the operational level, involves
continuously blending input from both the user and the motion planner [5], [6], [12], [13]. For this type of
shared control strategy, the wheelchair will not move unless input commands from both parties are received.
This characteristic allows the user to retain greater control authority and allows more collaboration between
the user and the wheelchair, which seems preferable in the crowd scenario. As a result, we adopt
continuously blending shared control as the basis for our shared control strategy.

2.1. Our Smart Wheelchair Platform
The full details of our smart wheelchair platform are given in Deliverable 5.3, however in order to better

understand our design structure and experiments, we briefly recap the core setup here. As shown in Figure 1,
our wheelchair is built on a standard Salsa M2 electrical wheelchair with a collection of additional sensors.
Both hardware and software modifications were made to the platform, including the addition of an RGBD
RealSense D435 camera mounted on an adjustable rear sensor frame, a Hokuyo 2D Lidar mounted on the
footrest, and ultrasonic sensor clusters mounted on the base corners as shown in Figure 1. We have also
equipped the wheelchair with two wheel encoders and one inertial measurement unit (IMU) which are used
for dead reckoning. The Robot Operating System (ROS) is used to integrate these sensors, compute their
relative transforms, and publish the relevant sensor data as ROS topics. The high-level data processing of the
Lidar, RGBD camera and shared autonomy model is performed on an Intel i9 core laptop with 16 GB of
RAM and a GeForce GTX 1080 GPU. Low-level data processing of the ultrasonic clusters is performed on
dedicated Arduinos and an Odroid Single Board Computer.

The wheelchair is driven via a joystick user interface and can accelerate up to approximately 5m/s.
Additional circuitry (and a software module) was also added to be able to directly read this joystick user
input and also supply a virtual (modified) joystick input to the robotic wheelchair's motor controller thus
allowing it to be driven programmatically. The joystick data is encoded using two axes that capture the
translational and rotational velocity inputs. We also developed a 1:1 model of our wheelchair in Unity3D for
our experiments in the CrowdBot simulator (see Figure 2).
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Figure 1. Our custom modified robotic wheelchair platform with mounted RGBD camera, Lidar, IMU, and
ultrasonic sensor clusters. On-board electronics such as the single board Odroid computer and processors

such as Arduino interface boards are placed under the seat. The sensor coverage is also illustrated.

Figure 2. The 1:1 model of our wheelchair in Unity3D for our simulation experiments.

3. Related Work: Planning and Blending

3.1. Motion Planner
One of the essential components of a shared control wheelchair is its motion planner. A detailed planning

strategy for other robots such as Pepper was included in Deliverable 3.1. However, the main difference
between our shared control wheelchair and fully autonomous mobile robots like Pepper, is that no global
planner is used. Due to the nature of shared control at the operational level, it is not necessary to provide a
global path as a human driver is involved in the navigation process. In reality the person's short-term global
goal often changes during the navigation tasks, according to who they meet along the way and any other
personal desires. Thus setting a fixed global path planner may not best reflect the user's intention and would
limit the user's interaction with the system.
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Therefore, our focus is instead on low latency local planning. In general, there are two types of local
motion planner, a reactive planner and a deliberative planner. A reactive planner decides the best action
based on the real-time sensor readings, while a deliberative planner uses prior information about the
environment to make plans. In the context of this project, the wheelchair is expected to react quickly and
safely in an unknown dynamic environment with high uncertainty, thus a reactive planner is more suitable.
However, the common downside for reactive navigation is that we may reach a sub-optimal solution and
there is no guarantee that the exact goal will be achieved.

Reactive planning has been studied extensively in the context of smart wheelchair navigation. In general, it
is either trajectory (path)-based or velocity-based. A trajectory-based approach includes an artificial potential
field [14] which was first presented by Khatib et al. (1986) and has been widely adopted for mobile robot
navigation [15], [16]. This approach assumes the goal and obstacles act like charged surfaces and the
potential creates an imaginary force which attracts the robot to a goal while repelling it from the obstacles.
As a result, the robot will move towards the goal while avoiding obstacles. However, the robot may get stuck
when the local minimum of the motion equation is reached.

Another method which has been widely used in robot navigation is the vector field histogram (VFH).
Introduced by Borenstein et al. (1991), VFH was first used for robot navigation with ultrasonic sensors using
dead reckoning [17]. It was further adapted to be used with Lidar in [18]. VFH is a grid-based method, which
starts by constructing a 2D histogram of occupancy based on the sensor information. It is then converted to a
1D histogram with polar coordinates. The valley in the histogram demonstrates the direction of free space
while the peak represents the direction of obstacles. As a result, a robot will move in the direction of free
space with a speed that is proportional to the distance from obstacles. This method allows the sensor error to
be considered but does not account for the robot’s dimension and kinematics. As a result, Ulrich et al. (1998)
introduced VFH+ which extended VFH to deal with robot kinematics constraints and was able to generate
smoother trajectories [18]. However, VFH+ may sometimes fail to choose the most appropriate direction due
to its purely local nature as indicated in [19]. This is mainly because the robot plans its motion only based on
current sensor inputs while ignoring future consequences. This issue is further addressed in another variant
of VFH called VFH*, which projects the robot’s trajectory several steps ahead and selects the most suitable
candidate direction by minimizing a cost function [19].

In addition to these trajectory-based methods, velocity-based reactive planners have also been explored
extensively in robot navigation. The most widely used planner is the dynamic window approach (DWA)
which was proposed by Fox et al. in 1997 [20]. It has been applied in shared control navigation for
non-holonomic robots as well as wheelchairs [5], and demonstrated its effectiveness in avoiding static
obstacles. However, naïve DWA does not take obstacle velocity information into account and thus is not well
suited to dynamic environments. This issue is addressed by other velocity-based approaches such as velocity
obstacle (VO) [21] and optimal reciprocal collision avoidance (ORCA) [22], which have been used to avoid
moving obstacles.

The rest of this section will briefly recap DWA and its variants, followed by VO and its extensions. This
design choice is consistent with Deliverable 3.1, where DWA and VO have been used in other robots for the
purpose of local planning.

3.1.1. Dynamic Window Approach
The Dynamic Window Approach (DWA) which was first proposed by Fox et al. is an obstacle-avoidance

method that takes into account the dynamic and kinematic constraints of a mobile robot [20]. DWA can be
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implemented in two steps. It starts with defining the suitable search space. DWA uses linear velocity and
angular velocity pairs (v,w) to describe all the circular trajectories, which reduces the search space to a
two-dimensional velocity space. Among all the velocity pairs, a set of admissible velocities which guarantee
safety will be computed. A (v,w) pair is considered admissible if the robot is able to stop before it reaches the
closest obstacle in its selected trajectory [20]. Among all the admissible velocity pairs, a feasible subset of
translational and rotational velocities which can be achieved by the robot in a moving time window is
extracted to form the final candidate velocity pairs. After the search space pruning process, the second step
of DWA is to select the optimal (v,w) pair that maximizes an objective function [20]. An illustration of DWA
is shown in Figure 3.

Figure 3. An illustration of candidate trajectories using DWA [23].

Although this approach demonstrates effective obstacle avoidance with static obstacles, the original
version of DWA does not incorporate obstacle velocity information and thus is not effective when used in a
dynamic environment. An extension of this approach has been proposed in [10], which was designed to
overcome the issue of dynamic obstacle avoidance by predicting the future positions of moving obstacles
using a dynamic occupancy map. However, this approach is computationally expensive.

3.1.2. Velocity Obstacle & Generalized Velocity Obstacle
Velocity obstacle (VO) was first proposed by Fiorini and Shiller in [21]. It is a velocity-based planning

approach, which has been widely used for robot navigation in dynamic environments. In general, it ensures
collision-free velocities by constructing so-called collision cones and removing all the velocities that may
result in collision in the near future (see Figure 4). While the original VO is designed for holonomic robots
only, its extension, Generalized Velocity Obstacle (GVO), deals with non-holonomic constraints, which are
more suited to our smart wheelchair platform.

Generalized Velocity Obstacle (GVO) was proposed by Wilkie (2009) [24] to enable the navigation of
car-like robots among arbitrarily moving obstacles. GVO differs from VO, which constructs collision cones
geometrically, as GVO calculates velocity obstacles algebraically. In detail, for a car-like robot which is
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assumed to have a constant speed and steering angle , GVO calculates the future position A of the robot՞՜ ՞φ
at time t with respect to its current robot frame as

( 1 )԰ ՝, ՞( ) = Ի՝Պ՗ ՞φ( ) ՜Ւ՗ ՞՜՝Պ՗ ՞φ( ) ՝Ի( )  − Ի՝Պ՗ ՞φ( ) Ռ՘՜ ՞՜՝Պ՗ ՞φ( ) ՝Ի( ) + 1՝Պ՗ ՞φ( )  ( )
Where L is the wheelbase length.

Obstacles are considered to have linear motion and their future position at time t can be easilyԱՒ 
calculated as

( 2 )ԱՒ ՝( ) = ՙԱՒ + ՟ԱՒ՝
And the velocity obstacle can be constructed for which

( 3 )‖԰ ՝ՖՒ՗, ՞( )− ԱՒ ՝ՖՒ՗( )‖ < ՛԰ + ՛Ա
Where and are radii of the robot and the obstacles, respectively. As a result, a feasible speed can be՛԰ ՛Ա

found which falls outside the velocity of the obstacles, and the final command is calculated by solving an
optimization problem.

Figure 4. Collision cones representing velocity obstacles, where A stands for a robot and B is an obstacle
[21].

3.2. Blending Strategy
Once a motion planner has been designed, its motor commands must be reconciled in some way with those

of the user (a ‘blending strategy’). Since the choice of blending strategy has a substantial effect on the user’s
experience of control, significant effort was expended to select the optimal strategy. The notion of optimality
from a user perspective (e.g. comfort) is often extremely different from that used in traditional robotics (e.g.
shortest path).
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3.2.1. Linear Blending

One of the most popular blending approaches is linear blending, where the final control command ՞ ՝( )ԻԱ
is a weighted sum of the user’s input and the command computed by the motion planner as shown in Figure
5 and the accompanying equations 4 and 5.

Figure 5. A block diagram of a typical linear blending approach

( 4 )՞ ՝( )ԻԱ = Քℎ՞ ՝( )ℎ + ՔՁ՞ ՝( )Ձ
( 5 )Քℎ + ՔՁ = 1

Where and are the weights assigned to the human and the motion planner outputs ( and ),Քℎ ՔՁ ՞ ՝( )ℎ ՞ ՝( )Ձ
respectively.

Linear blending has been extensively explored by researchers [6], [25], [26]. In most cases, and areՔℎ ՔՁ
dynamic values and are defined based on certain criteria. As a result, the main focus for this approach lies in
the weight negotiation between the user and the planner in order to optimize certain objectives.

However, linear blending has some defects. Firstly, it was demonstrated mathematically by Trautman
(2015) that simple blending of the two trajectories does not guarantee a collision-free resultant trajectory
[27]. Secondly, due to the uncertain nature of the user’s intention in cases where there are several similar
candidates the final blended trajectory may not align with their desired movement. To address these issues,
he proposed probabilistic shared control (PSC) [27].

3.2.2. Probabilistic Shared Control

Probabilistic shared control (PSC) models the human-robot interaction by taking interaction uncertainty
into account. This approach adds more flexibility to the user-wheelchair collaboration strategies, while
guaranteeing safety mathematically [27]. It assumes both the user’s input (interpreted as velocity pairs) and
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the candidate velocities (computed by the motion planner), follow a probability distribution. The process is
implemented by taking the joint probability of the velocity input from both the user and the planner, and the
optimal command can be found by maximizing this joint probability. It can be formulated as:

( 6 )՞՝+1ԿՂԲ = ՞՝+1Ձ*
( 7 )՞՝+1ԿՂԲ = Պ՛ՐՖՊա՞՝+1Ձ ՙ(՞՝+1ℎ , ՞՝+1Ձ , ՞՝+1Ռ |գ1:՝ℎ , գ1:՝Ձ , գ1:՝Ռ )
( 8 )ՙ ՞՝+1ℎ , ՞՝+1Ձ , Ռ( ) =      φ(՞՝+1ℎ , ՞՝+1Ձ )ՙ(՞՝+1ℎ |գ1:՝ℎ )ՙ(՞՝+1Ձ , ՞՝+1Ռ |գ1:՝)

where represents measurements of the user input, in which defines measurementsգ1:՝ℎ  գ1:՝ = [գ1:՝Ձ , գ1:՝Ռ ] գ1:՝Ձ
of the robot trajectory and stands for measurements of obstacles trajectory .՞Ձ գ1:՝Ռ ՞Ռ

captures how “agreeable” the robot trajectory is with the intention of the user, whileφ(՞՝+1ℎ , ՞՝+1Ձ )
models the autonomy of the robot by taking human-robot interactions into consideration.ՙ(՞՝+1Ձ , ՞՝+1Ռ |գ1:՝)

Following this line of research, Ezeh et al. (2017) applied PSC in a wheelchair navigation task and
demonstrated that PSC is safer than linear blending through experiments [5]. However, like other
state-of-the-art research into the shared control of wheelchairs, the application scenario was limited to a
static environment. In this report, we propose a hierarchical framework that extends the implementation of
PSC to dynamic environments.

4. Shared Control Navigation using Probabilistic Shared Control (PSC)

4.1. A Hierarchical Framework
Our proposed design uses a hierarchical framework for collision avoidance, which treats static and

dynamic obstacles separately. The reasons for this are threefold:
● It allows more flexibility and transparency in control.
● It reduces computational complexity by pruning the subsequent velocity search space for dynamic

obstacle avoidance.
● As we need to detect and track pedestrians, we will use Lidar+RGBD camera for this purpose. In

order to detect the static obstacles and increase the coverage around the wheelchair, we make use of cheaper
sensors such as ultrasonic ones. They are also more computationally efficient.

Figure 6 shows an overview of our collision avoidance and shared control algorithm. In detail, we first
search the velocity space for all achievable velocity pairs based on the wheelchair kinematics. Then, the
dynamic window approach (DWA) is applied for low-level collision avoidance with static obstacles, which
looks into a time horizon . In our setting, where the maximum speed of the wheelchair is limited to 1.2m/s,∆՝
we found that gave a reasonable result. The resultant admissible and achievable speed is further∆՝ = 0. 5՜
used as the search space for GVO, which filters out any velocity that may result in a collision with moving
obstacles. In our implementation, the simulated moving obstacles (pedestrian avatars) each have a radius of
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. The wheelchair radius is considered as the maximum length on the wheelchair edge from its՛Ա = 0. 33Ֆ
centre of mass, which is in our case. Additionally, we assign a safety margin . As՛԰ = 0. 6Ֆ ՛՜ՊՏՎ = 0. 15Ֆ
a result, the final candidate velocity should satisfy:՞

+ ( 9 )‖԰ ՝ՖՒ՗, ՞( )− ԱՒ ՝ՖՒ՗( )‖ > ՛԰ + ՛Ա ՛՜ՊՏՎ
After this pruning process, a cost function is used to evaluate each final candidate, in terms of heading,

clearance and velocity. This cost is interpreted as the probability associated with each candidate velocity,
which will be used in the shared control stage.

In terms of the shared control blending strategy, PSC serves as our theoretical basis where we extend it to
deal with moving obstacles. We make the following assumptions.
● As no global planning is involved in the navigation, a local goal is defined as 2m ahead of the user’s

intended trajectory.
● The user’s intended trajectory is only based on the current input at the most recent time step. This

allows us to simplify to .ՙ(՞՝+1ℎ |գ1:՝ℎ ) ՙ(՞՝+1ℎ |գ՝ℎ)
● As a starting point of this research, obstacles are currently assumed to have linear motion, and their

trajectories are only based on the measurements at the most recent time step. This allows us to

reduce to .գ1:՝Ռ գ՝Ռ
● The motion of the obstacles is assumed not to be affected by the robot, only a simple interaction

function between the moving obstacles and the wheelchair has been modelled.

Mathematically, the problem can be simplified to:

( 10 ) ՞՝+1ԿՂԲ = Պ՛ՐՖՊա՞՝+1Ձ ՙ գ՝ℎ, գ1:՝Ձ , գ՝Ռ( )     ՙ ՞՝+1ℎ , ՞՝+1Ձ , Ռ( ) =      φ ՞՝+1ℎ , ՞՝+1Ձ( )ՙ գ՝ℎ( )ՙ գ1:՝Ձ , գ՝Ռ( )
( 11 )

The agreeability between the user and the planner is modelled as:

( 12 )φ(՞՝+1ℎ , ՞՝+1Ձ ) = Վաՙ(− 12γ (՞̂1+՝ℎ − ՞̂1+՝Ձ )(՞̂1+՝ℎ − ՞̂1+՝Ձ )')
where and are normalized user and robot trajectories (input). The parameter which has a range՞̂1+՝ℎ ՞̂1+՝Ձ γ

of models how strongly and are correlated. As a result, the agreeability is between 0 andγ > 0 ՞̂1+՝ℎ ՞̂1+՝Ձ φ
1, with 1 being the path planner’s decision exactly matches the user’s intended trajectory. Through trial and
error, we set in our implementation to achieve an acceptable trade-off.γ = 100

In addition, the autonomy probability can be written as:
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ՙ գ1:՝Ձ , գ՝Ռ( ) = Տ ՞Ձ, ՞Ռ( )ՙ գ1:՝Ձ( )Ւ=1
՗՝∏ ՙ գ՝Ռ( )         

( 13 )

where is the number of moving obstacles detected by the wheelchair onboard sensors at time t.՗՝
Ideally, the most common scenario for robot navigation that involves moving obstacles is in a

human-populated environment. As a result, it is important to consider pedestrian-robot interaction by

modelling the interaction function . In this paper, we assume the pedestrians' short term motion isՏ ՞Ձ, ՞Ռ( )
not affected by the robot, and model the interaction based on robot-pedestrian physical distance:

( 14 )Տ ՞Ձ, ՞Ռ( ) = Ւ=0
՗՝∏ 1 − Պ * Վաՙ − 12՚2 ՞՝+1Ձ − ՞՝+1ՌՒ||| |||( ) ( )

where is the Euclidean distance between the robot and each moving obstacle; a is the՞՝+1Ձ − ՞՝+1ՌՒ||| |||
repulsion force, which can be set between [0,1]; and q is a scaling parameter, which encodes the idea of
safety distance implicitly and is set to 0.9. The rationale behind this function is that a low probability is
assigned to candidate robot actions which may result in short distance to all moving obstacles that are within
the sensor range.

models the motion planner’s trajectory distribution based on prior information. This can beՙ(՞՝+1Ձ |գ1:՝Ձ )
considered as the cost that is associated with each candidate velocity pair that comes from the motion
planner. We model the cost function as:

( 15 )Զ ՟,ՠ( ) = α * ℎՎՊՍՒ՗Ր ՟,ՠ( ) + β * ՌՕՎՊ՛Պ՗ՌՎ ՟,ՠ( ) + γ * ՟ՎՕ՘ՌՒ՝բ(՟,ՠ)
where are weights for each term, ‘heading’ measures the alignment of the robot with the goalα,  β, γ

direction, ‘clearance’ represents the distance to the nearest static obstacle on the selected trajectory while
‘velocity’ equals the normalized absolute linear candidate velocity. By tuning these parameters, different
motion behaviours can be achieved by emphasizing the relative importance of these competing objectives.
These parameters together with , and h can be further tuned on a user basis in order to provide the mostγ  Պ
suitable assistance to the user. Intuitively, we want the wheelchair to run at fast speed if possible and keep a
suitable distance from obstacles so that the manoeuvre will not be too aggressive. As a result, in our test, we
set to be 0.1, 0.3, 0.6, respectively which gives reasonable behaviour through trial and error. Note thisα,  β, γ
cost function is slightly different from the one proposed in Deliverable 3.1 which instead aims to minimize
the distance towards the goal while maximizing the distance to the obstacles.
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Figure 6. Flowchart of our collision avoidance and shared control algorithm.

4.2. Implementation and validation in a simulator
Before implementing our strategy on the actual wheelchair, we first implemented and validated it in a

simulator which is built on Unity 3D. For the details of the simulator, please refer to Deliverable 4.2.

In order to achieve an accurate evaluation, all sensor characteristics (except the RGBD camera) have been
modelled in the simulator. Wheelchair dynamics were approximated in the simulator by using Unity physics
components. Table 1 shows some key parameters. The center of mass and moment of inertia for the
wheelchair body (plus driver), two drive wheels and four caster wheels were calculated automatically from
the built 3D models.

Table 1. WHEELCHAIR PARAMETERS IN THE SIMULATOR

Parameters Value

Body mass 200kg (Wheelchair + a driver)

Drive wheel mass 2.6kg

Caster wheel mass 1kg

Angular drag 0.05N

Motor maximum torque 400Nm

The strategy was implemented as if all inputs were from actual sensors, which requires minimal
modification for it to be transferred to a real-world test. The control strategy was implemented in a ROS
framework and communication between the simulator and ROS is achieved by RosSharp as illustrated in
Figure 7.
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To begin with, simple sensor fusion is achieved by implementing an extended Kalman filter in the
“robot_localization” package, which takes input from two wheel encoders and the IMU to publish an
accurate odometry at 20hz. In terms of perception, 12 ultrasonic sensors and one Lidar sense the surrounding
environment, and are used to construct a global occupancy grid map which is published at 10hz. In our
implementation, the map has a size of 40m x 40m with a resolution of 0.05m. It is centred at a fixed frame to
reduce the computational cost.

Our control strategy takes input from the occupancy grid and implements DWA for static obstacle
avoidance. Resultant admissible velocities are used as the search space for the GVO which receives
information on the dynamic obstacles from Unity. In the future, this information would be provided by a
pedestrian tracker that utilizes the RGBD camera and Lidar data such as that developed as part of deliverable
2.2.

Figure 7. Structure of the proposed design strategy and its communication with Unity3D

The output from GVO is blended with the user input (which is received from a keyboard) using
probabilistic shared control. The final velocity command is published at a rate of 10hz and is subscribed by
two differential drive PID controllers running at 50hz, which calculates suitable motor torque for two drive
wheels so as to achieve the desired linear and angular velocity.

4.2.1. Simple environment with static and moving obstacles
To evaluate the validity and performance of our proposed strategy, we designed an H-shaped course

populated with moving pedestrians. The course was designed to simulate daily wheelchair usage, taking into
consideration typical manoeuvres from the Wheelchair Skills Test (WST) [28], specifically we chose three of
the most used skills, detailed in Table 2.
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Table 2. WHEELCHAIR SKILLS THAT HAVE BEEN TESTED

Number Skills from WST

1 Roll forwards

2 Turn while moving forwards (90°)
3 Avoid moving obstacle

For these initial tests, three pedestrian agents were used. These were programmed to move in a simple
manner – moving straight in the direction of their original heading. Pedestrians were placed at three corners
of the maze with each instructed to move in a different direction at a mean speed of 1.1m/s, this simulates an
average human daily walking speed [29]. The initial positions and walking directions were designed to
maximize the potential interaction opportunity with the wheelchair. The wheelchair started from the origin
(shown in Figure 8 with a blue star) with a goal of reaching the upper left corner of the H-shaped course
(shown in Figure 8 with a red star). The left and right passage of the course has a length of 19m and a width
of 3m while the middle passage was 8m long and 3m wide.

During the navigation, all sensor data was published to ROS and a global occupancy grid map was
constructed which was fixed at the origin to reduce the computational cost.

Figure 8. Left: Screenshot of the simulation (top view) where the blue star shows the wheelchair’s starting
point and the red star represents the goal. Right: First person view.

4.2.1.1. Metrics

Three metrics were used to evaluate the safety and assistance for the proposed shared control navigation
design. These metrics align with the performance metrics which have been proposed in Deliverable 1.3.

These are defined as:

● C: Number of collisions (with walls or pedestrians). This metric is the number of collisions that
occurred in the scenario and were reported by the simulator.

● : Task completion time (the time that the user required to reach the goal position from the startingՃ՝
position):

( 16 )՝Ռ = ՝Վ՗Ս − ՝՜՝Պ՛՝
● A: Agreement. We define agreement in terms of the deviation of the user’s heading command from

the final shared control’s heading command. Note this metric differs from equation 12 which
compares the user’s command with the path planner’s command before the blending process.
Mathematically, it is calculated as:
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( 17 )θ ՞( ) = ՝Պ՗−1( ՟ՠ ) 
( 18 )ՊՒ = 1 − |θ(գℎՒ )⊖θ(՞ՂԲՒ )|π
( 19 )ՊՐ՛ՎՎՖՎ՗՝ =  Ւ=0

Խ∑ ՊՒ∙∆՝Ւ
Ւ=0
Խ∑ ∆՝Ւ

where and are the translational and rotational velocities ~ , is the normalised՟ ՠ ՞ [՟ ՠ ] ՊՒ
agreement at time step and is the final output of the probabilistic shared control. N is the՝Ւ  ՞ՂԲՒ
number of samples available in which data from the user measured input coincide in time withգℎՒ  

, and is the duration of the user’s input command .՞ՂԲՒ ∆՝Ւ գℎՒ
4.2.1.2. Performance

Due to COVID-19, it was difficult to recruit many wheelchair users for a test with the actual wheelchair.
Alternatively, three healthy participants who are not wheelchair users were recruited and participated in
driving the wheelchair in the simulator. Two had a background in robotics or computer science while one
participant had an unrelated background. Participants were allowed to perform some trial runs to familiarize
themselves with the setup before the actual test. In total, three test trials were conducted where each user
drove the wheelchair using keyboard arrow keys. It simulates a head-array interface which can only indicate
the four cardinal directions and four secondary intercardinal directions [30].

Figures 9 through 13 show the results for one trial from one participant (note for these figures, we use a
right-hand coordinate frame which means the x-axis is the vertical one and the y-axis is the horizontal one).
As shown in Figure 9 and Figure 10, the final blended velocity command followed the user’s input most of
the time, except for when there was a collision risk. In detail, the chosen linear velocity at t=11-16s and
t=36-38s, angular velocity at 10-15s and 35-37s are largely different from the user’s intended velocity. This
is also reflected in Figure 12 which describes the agreement between the user and the final chosen command.
Figure 13 shows the avoidance trajectory for the wheelchair (plotted in black circles) and the trajectories for
three moving pedestrians (plotted in red). The largest disagreements between the user input and the final
chosen command are highlighted in Figure 13 by orange stars.

It can be seen that at t=10-16s, the wheelchair detected two moving pedestrians in proximity while the
user’s input indicates that the user would like to keep moving forward at the maximum speed. Under this
scenario, the control strategy filtered out candidate velocities that may result in collision and found the one
that guaranteed safety while best obeying the user’s intention. As a result, the wheelchair decreased its linear
velocity and made a right turn by choosing negative angular velocities. Afterwards, it stopped for a short
time and then moved in the user-intended direction.

Similarly, at t=35-39s, the wheelchair encountered a pedestrian who moved across its path. At about
t=35-39s, the user kept trying to move straight forward while the controller decided to make a small right
turn to avoid future collisions. It then made a big right turn following the user’s command.
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Table 3 summarizes the test results for each participant. It can be seen that overall the agreement is high
for all three participants and no collisions occurred. For Participant 3, a slightly longer completion time was
observed which could be explained by their unfamiliarity with such a system.

Figure 9. Linear Velocity

Figure 10. Angular Velocity.

Figure 11. Wheelchair orientation.

Figure 12. Agreement between the user's input and the final chosen command.
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Figure 13. Wheelchair avoidance trajectory, where the wheelchair detects two pedestrians at L1 and one
pedestrian at L2, and responds accordingly. The transparency represents the time (alpha from 0-100

corresponds to the time from 0 to 75s). The red arrows represent the moving direction of each pedestrian and
the green arrows represent the orientation of the wheelchair).

Table 3. TESTING RESULTS FOR THREE PARTICIPANTS

Participant Collisions (C) Completion time, (s)Ճ՝ Agreement (A)

1 0 45.15 0.9777

2 0 46.47 0.9469

3 0 50.25 0.9882

In general, we can see that the final command chosen by the controller generated safe and reasonable
motion, which allowed the wheelchair to avoid static and moving obstacles while following the user’s
intention. The parameters were chosen in a way that favours high speed while guaranteeing a safe distance.

4.2.1.3. Comparison with other methods

We further evaluated our approach (we will call it GVDWA) by comparing it with related works, namely
PSC with naive DWA which was originally implemented by Ezeh et al. [5], and PSC with DWA which takes
obstacle velocities into account (we will call it VDWA) [31]. For a valid comparison, we used the same
parameters that had been used for our method GVDWA for the cost function in all three methods.

In order to examine performance in different human density environments, we designed three scenarios in
the simulator (see Figure 14). For each scenario, one user drove the wheelchair three times with each control
method, and the performance was evaluated in terms of average number of collisions (C), average
computation time ( ), average agreement (A) and average task completion time ( ). Table 4 provides aՃՌ Ճ՝
summary of the result.

It can be seen that in general GVDWA+PSC exceeds other methods in terms of reducing the number of
collisions, while its computation time, agreement and task completion time are comparable with PSC+naive
DWA. Of the three methods, PSC+naive DWA has the highest number of collisions, which is to be expected

Page 20 of 44



EU H2020 Research & Innovation – CROWDBOT Project ICT-25-2016-2017
D3.6 Shared Control Navigation

as it treats moving obstacles as static and may result in moving towards the direction of the obstacle. For S1,
we further tested the capability of naive DWA+PSC and only observed collision free avoidance when the
speed of the avatar was decreased to 0.5m/s. 

When obstacle velocity information is incorporated in DWA, the number of collisions was reduced at the
cost of increased computation time. Of the three methods, our proposed method GVDWA and VDWA both
predict moving obstacle positions over a short time horizon based on their velocity, where VDWA+PSC
shows the longest computational time due to the use of a dynamic occupancy map. 

In terms of agreement, all three methods result in agreement greater than 0.9, while naive DWA+PSC
shows a slightly higher value. This can be explained because in some situations, this method moves towards
the user’s desired direction despite future collision danger with moving obstacles. Although GVDWA+PSC
has slightly lower agreement, the deviation normally occurs when there is a risk of collision. Figure 15
shows the avoidance trajectory with its corresponding velocity for GVO+DWA+PSC in the H_maze
simulated map with 6 people. Two obvious avoiding manoeuvres can be seen in the two orange stars.

As for the task completion time, GVDWA+PSC takes longer than VDWA+PSC and DWA+PSC. This
result is consistent with the computational time and the agreement, and can be explained as the wheelchair
deviated from the user’s desired path (potentially the shortest) to avoid obstacles, which took a longer time.

Table 4. COMPARISON RESULTS SUMMARY(Mean SD)±

Figure 14. Three test scenarios. From left to right: S1,S2,S3. S1 has one pedestrian moving towards the
wheelchair, S2 has three pedestrians moving in different directions in the H maze while the number of

pedestrians was increased to six in S3. All pedestrians move at an average speed of 1.1m/s.
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Figure 15. Avoidance trajectory of the wheelchair in S3 using our method. Black circles represent the
trajectory of the wheelchair and the green arrows represent its orientation (starting from bottom right and
moving towards top left). Circles with other colors show the trajectories of different pedestrians when in

close proximity to the wheelchair. The wheelchair successfully avoided all pedestrians.

4.2.1.4. Discussion

The simulation results indicate the validity of our design, which can be seen as a first step towards
enabling a shared control wheelchair to navigate in a dynamic environment. Due to the simulator setup and
the implementation method, minimal code modifications are needed to transfer this approach onto the actual
wheelchair. In the future, the test will be carried out in the physical world, where information about the
dynamic obstacles will be provided by a people tracker and the results will be presented as part of the final
evaluation in Deliverable 1.5. Nevertheless, we would like to consider some of the current limitations of our
design:

1) Computational cost
The DWA is computationally expensive. In order to reduce computational time and still allow the design

loop to be executed in real-time, we have limited the velocity search space to those that generate trajectories
that fall within [-90,90] degrees of the user’s intended trajectory. For example, if the user’s intention is going
forward, the planner will only search for the candidate with . This simplification also takes the user’s՟≥0
comfort into consideration, as the user may feel uncomfortable if the wheelchair drives in the opposite
direction to the way they intended. In our implementation, we set the horizon for DWA and GVO to be 4s. It
allows real-time implementation at a frequency of 10hz on a 2.6GHz Intel Core i7-9750H CPU. However,
we expect the computational time to increase when more pedestrians are involved and the crowd density
increases.

2) Latency
We observed that there is about a 0.25s latency in the system. This is mainly due to the motor latency and

the communication delay between ROS and Unity. In order to reduce its effect on the system, when
performing the dynamic window search, we assumed the wheelchair keeps moving with its current velocity
for two time intervals, and the search starts with the new wheelchair position.

3) Morphology
One main limitation of GVO is that it assumes both the wheelchair and the pedestrians are circular objects.

This poor representation of the morphology of the wheelchair may lead to over-cautious behaviour when
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close to other dynamic obstacles. We would like to address this problem in the future by using the method
proposed in Deliverable 3.1 which obtains a smooth boundary for each obstacle by fitting a Bezier spline to
the occupied cells, although this will clearly have computational implications.

4) Simplified obstacles and interaction function
As mentioned in Section 4.1, we assume the obstacle’s next movement is only based on its current

trajectory measurement. This may not be true, especially when this “obstacle” is a human. In addition, we
use a simplified function to model the interaction between the obstacles (human) and the wheelchair which is
similar to a cost function that favours velocity which could result in exaggerated clearance. In reality,
pedestrians may adapt their trajectory to avoid the robot. To better understand this problem, we conducted a
crowd-robot walking experiment and would like to incorporate our findings into our navigation strategy in
the future (for full details of the experiment, please refer to Deliverable 1.4 and see Section 5).

4.2.2. 1D and 2D crowds
We also evaluated our proposed framework in simulated 1D and 2D crowds scenarios. These scenarios

take place in a simulated version of UCL’s PAMELA facility (see Figure 16 and Figure 17), which hosted the
physical crowd-wheelchair experiments already described in Deliverable 1.4. The crowds in these scenarios
are goal driven (random starting positions in the green area and random goals in the red area) with RVO used
for local avoidance. Although it may not best simulate the user-crowd interaction, it serves as a good starting
point for us to evaluate and further improve our shared control strategy.

Figure 16. Simulated 1D crowds.
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Figure 17. Simulated 2D crowds.

In addition to the shared control metrics, 6 categories of evaluation metrics from Deliverable 1.3 were
used, as detailed in Table 5.

Table 5. A summary of metrics

Category Symbol Metric

Path efficiency
(Compares the robot only
scenario with crowd-robot
scenario)

T1 Relative time to goal

L1 Relative path length

Effect on crowd
(Compares the crowd only
scenario with crowd-robot
scenario)

T2 Effect on time

V2 Effect on velocity

Pedestrian-robot similarities
(Compares the robot and
averaged pedestrians behaviour
in the same crowd-robot
scenario)

T3 Time to goal similarity

L3 Path length similarity

H3 Heading similarity

V3 Velocity similarity
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Crowd-robot interaction P4 Proximity

Collision C5 Number of collisions

Shared control metrics A6 Agreement

F6 Fluency of commands

Note: We agreed with Inria to slightly modify the proximity metric (P4), so as to keep it in the range [0, 1]
thus making it easier to compare with our other metrics. The new P4 metric is defined as:

(20)Կ4 =  1 − 1Ճ՛՘Ջ՘՝ 0
՝՛՘Ջ՘՝∑ ՍՖՒ՗(՝)Օ՜

where is the minimum distance between the robot and a pedestrian at a given time. stands for theՍՖՒ՗(՝) Օ՜
test scale of the environment, which is used to keep the P4 result between 0 and 1. In our implementation, we
set it to 5m.

For each scenario, three conditions were tested: crowds only, wheelchair (robot) only and
crowd-wheelchair navigation. Five trials have been carried out for each condition. The results are shown in
Figure 18 to Figure 22. Statistical significance was tested using a Wilcoxon signed-rank test, where the
significance is reported at p<0.05.

It can be seen that in terms of path efficiency, the shared control wheelchair spent almost twice the time
(T1) and travelled a slightly longer distance (L1) to reach the goal when navigating through crowds.

From the crowd’s perspective, the inclusion of a shared control wheelchair slightly increased the time (T2)
for crowds to reach the goal, and decreased their velocity (V2).

These results indicate that in a crowd-robot navigation task, our shared control navigation strategy has a
small (although not significant) effect on the crowds. This is expected as the current strategy does not aim to
minimize such effects. In the future, we would like to add this consideration to our navigation strategy.

In terms of the pedestrian-robot similarities, the wheelchair took a longer time (T3), but traversed a shorter
path (L3) to reach the goal compared to the average crowd participant. In addition, a slightly lower velocity
(V3) and more variation in heading (H3) were observed for the wheelchair. It is likely that these differences
reflect more opportunities for the driver and the controller to disagree in the 2D case: e.g. do I decide to pass
the oncoming pedestrian on the left or the right?

Throughout the trials, no collisions (C5) occurred, even though the amount of interaction between the
wheelchair and the crowds is quite high (P4). For the 1D scenario, the proximity value between the
wheelchair (centre) and the nearest pedestrian (centre) is about 0.7. In the 2D scenario this value is slightly
lower (0.65).

For shared control metrics, the user agreement (A6) and fluency of commands (F6) both have relatively
high values (>80%) and small variation. This indicates that our shared control strategy generally obeys the
user's intention in most situations and only provides assistance when necessary. Note these values may
change when a different user or different driving interface is involved and will be investigated further as part
of Deliverable 1.5.
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Figure 18. Path efficiency results for the simulated 1D and 2D crowd. In both scenarios, similar results
in terms of relative time to goal (T1) and relative path length (L1) can be observed, where the

wheelchair spends twice the time with slightly longer distance reaching the goal when it travels with
crowds compared to the case when it travels alone.

Figure 19. The wheelchair “effect on crowd” for the simulated 1D and 2D crowds. In both scenarios,
similar results in terms of relative time to goal (T2) and relative path length (L2) can be observed,

where the crowd moves slightly slower and spends slightly more time reaching the goal when it travels
with the wheelchair compared to the case when the wheelchair is not present.

Page 26 of 44



EU H2020 Research & Innovation – CROWDBOT Project ICT-25-2016-2017
D3.6 Shared Control Navigation

Figure 20. The pedestrian-robot (wheelchair) similarity for the simulated 1D and 2D crowds. Both
scenarios yield similar results in terms of time to goal similarity (T3), path length similarity (L3) and
velocity similarity (V3). In general, the wheelchair spent around 70% more time, 40% less distance to

reach the goal with 20% less velocity. A significant difference in the similarity of heading (H3) (p<0.05)
is observed between the 1D and 2D crowd scenarios.

Figure 21. The crowd-robot (wheelchair) interaction metric for the simulated 1D and 2D crowds. Both
scenarios yielded similar results in terms of proximity (P4).
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Figure 22. Evaluation of the shared-control performance for the simulated 1D and 2D crowds. In both
scenarios, similar results in terms of user-planner agreement (A6) and user command fluency (F6) can

be observed. Results indicate high agreement and high command fluency.

5. Wheelchair-Crowd Experiments
As detailed in Deliverable 1.4, we previously conducted an experiment in UCL’s Pedestrian

Accessibility Movement Environment Laboratory (PAMELA) to better understand the interactions
between wheelchair user and crowd. In order to check the validity of our simulator and evaluate our
different navigation strategies, we constructed a virtual PAMELA environment in the simulator and ran
the same experiment with a similar setup (Figure 23), using the original results as reference. Two
conditions were tested: (wheelchair running at) low speed and high speed. For these experiments, the
wheelchair was fully controlled by the driver and no shared control was used.
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Figure 23. Simulated and actual PAMELA experiment.

To mimic the setup we used in the actual PAMELA experiment, each condition was tested 5 times in the
simulation. For each trial, the wheelchair and pedestrian positions were shuffled. For both speed conditions,
the wheelchair maximum speed was set to 0.9m/s and 1.3m/s relatively, and resulted in an average speed
around 0.75m/s and 0.95m/s in the simulator, which is comparable to the average speed observed in the
actual experimental data (0.71m/s and 0.96m/s).

For the low speed scenario, it can be seen from Figure 23 to Figure 26 that the simulated results are similar
to the actual results in terms of effect on crowd (T2,V2), and capture the velocity similarity between the
pedestrians and the wheelchair (V3). However, the time (T3), path length (L3) and heading (H3) similarities
as well as the crowd-robot interaction in terms of proximity (P4) were not well captured. The most probable
cause for this variation in similarity metrics is the different input device used in the simulated case (keyboard
as opposed to joystick), which led to more discretised movement commands. We would like to point out that
this choice of using keyboard inputs was due to limited lab access during COVID, and we would like to
repeat the test in the simulator with a joystick in the future.

Similar results can be seen in the high speed scenario (Figure 27 to Figure 30). These comparable results
for different metrics and the consistency of the results across different driving speeds indicate that the
simulator does mimic the real world experiment fairly well. However, in future, we will evaluate the
performance metrics by driving the wheelchair using a joystick in the simulator and further improve the
pedestrian’s behaviour using the data we collected in PAMELA which would allow a more realistic user
(wheelchair)-crowd interaction to be simulated.
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Figure 24. Effect on crowd result for the simulated and actual PAMELA experiment when the
wheelchair is in low-speed mode. In both scenarios, similar results in terms of effect on time (T2) and

effect on velocity (V2) can be observed, where the crowds move slightly slower and spend slightly more
time reaching the goal when it travels with the wheelchair compared to the case when the wheelchair is

not present.

Figure 25. The pedestrian-robot (wheelchair) similarity for the simulated and actual PAMELA
experiment when the wheelchair is in low-speed mode. In both scenarios, the velocity similarity is

around 80%. A significant difference (p<0.05) can be seen in path length similarity (L3) and heading
similarity (H3). There is also a noticeable but not significant difference in time to goal similarity (T3).

Page 30 of 44



EU H2020 Research & Innovation – CROWDBOT Project ICT-25-2016-2017
D3.6 Shared Control Navigation

Figure 26. The crowd-robot (wheelchair) interaction for the simulated and actual PAMELA
experiment when the wheelchair is in low-speed mode. In the simulated scenario, proximity is higher

than in the real-world experiment.

Figure 27. Similar wheelchair speed (low) in the simulated and actual PAMELA experiment.
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Figure 28. Effect on crowd result for the simulated and actual PAMELA experiments when the
wheelchair is in high-speed mode. In both scenarios, similar results in terms of effect on time (T2) and
effect on velocity (V2) can be observed, where the crowds move slightly slower and spend slightly more
time reaching the goal when it travels with the wheelchair compared to the case when the wheelchair is

not present.

Figure 29. The pedestrian-robot (wheelchair) similarity score for the simulated and actual PAMELA
experiments when the wheelchair is in high-speed mode. In both scenarios, the velocity similarity is

around 95%. A significant difference (p<0.05) can be seen in path length similarity (L3). There is also
a noticeable but not significant difference in time to goal similarity (T3) and heading similarity (H3).
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Figure 30. The crowd-robot (wheelchair) interaction for the simulated and actual PAMELA
experiment when the wheelchair is in high-speed mode. In the simulated scenario, proximity is higher

than in the real-world experiment.

Figure 31. Similar wheelchair speed (high) in the simulated and actual PAMELA experiment.
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6. Estimating User Intent for Shared Control
User intent, in the context of robotic wheelchair navigation, refers to the driving intention of a wheelchair

user, which is unknown. An approximation can however be derived from the joystick driving input the user
provides, which is translated into a drive velocity by the wheelchair’s motor controller, as per the previous
sections of this report.

Alternatively, rather than explicitly generating wheelchair trajectories, we could instead learn user models
for driving intent from vision data. This model is a complex non-linear mapping from image sequences to the
wheelchair’s joystick drive input. In this section we train and test our models on real-world datasets collected
using our robotic wheelchair in dense natural crowds.

6.1. Crowd Dataset
We collected a large-scale shared autonomy robot dataset at the crowded University College London

(UCL) Bloomsbury campus. Our robotic wheelchair was driven by four different users through natural
crowds over multiple days, both indoors and outdoors, and under varying lighting conditions as summarised
by the Table below. Crowd densities varied from very dense (3 people per square meter) to lightly dense.

Table 6: Summary of our robotic wheelchair dataset, collected through natural crowds at UCL

Trials Day Weather Lighting Route Driver

1-3 1 Overcast Day 2 O

4-6 1 Light rain Day 2 O

7 1 Overcast Day 2 R

8 2 Overcast Day 2 O

9-10 2 Light rain Day 3 A

11 2 Overcast Dusk 3 R

12 3 Overcast Day 3 O

13 3 Indoors Indoor 1 O

14 3 Light rain Day 3 O

15-16 4 Overcast Day 2 F

Each trial consists of a driver navigating the wheelchair along various routes on campus. Each route is set
to begin at the location pointed to by the red arrow in Figure 31. Route 1 is indoors inside the Engineering
cafeteria. Route 2 includes driving through an overpass, through multiple doors and into the main student
cafeteria whilst Route 3 also includes using a lift to get to a busy indoor cloister and outdoor quad. Five
sensors were recorded for this data collection run including the RGBD camera, lidar, ultrasonic clusters,
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IMU and joystick. Our user intent model specifically uses the camera and joystick data. Typical crowd
densities encountered during our data collection trials are shown in Figure 32.

Figure 32. A map of UCL campus, showing the three routes traversed during our data collection trials;
the robotic wheelchair moved through natural crowds over multiple days.
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Figure 33. Our robotic wheelchair platform shown navigating through natural crowds, both indoors
and outdoors, at UCL during our data collection trials.

6.2. Understanding User Intent

Every wheelchair user has their own individual driving style which captures their tendency to accelerate,
how sharply they turn, whether they stop (release the joystick) or simply deccelerate (slowly move the
joystick backwards) in the face of uncertainty, and how often they perform complex reversing manoeuvres.
Crowded spaces add further complexity since there are independent agents (the pedestrians) capable of
interacting with the wheelchair in a number of different non-deterministic ways. Different user intent models
are therefore required for different scenarios.

We consider a specific scenario, common in rehabilitation facilities [32], where a patient with visual
impairment has to safely drive a powered wheelchair. The limitations in the patient's field of view makes
moving towards a goal position whilst safely avoiding pedestrians and other moving objects challenging. To
achieve safe navigation with dynamic obstacles, we learn a user intent model which can be used to either
replace or augment the patient’s noisy joystick input. This model is learnt from data collected from several
drivers who do not have any visual impairments.

Specifically, we consider hemineglect, a neuropsychological condition resulting most commonly from
right-hemisphere brain injury. A person with hemineglect lacks awareness and attention to one side of their
field of view, even though the eyesight is unaffected [33]. This condition manifests in activities such as
eating only one side of a plate, applying make-up to one half of the face, only shaving one side of the face
and being unaware of large objects (even people) on the neglected side. The effects of left-side hemineglect
(caused by right hemisphere stroke) [34] are illustrated in Figure 33 below, using image processing
techniques on our robotic wheelchair dataset. Notice how pedestrians are occluded in the hemineglect field
of view, making safe wheelchair navigation challenging. Our user intent model seeks to address this
challenging problem.
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Figure 34. Normal visual field (left) compared to hemineglect partially restricted field of view (right).

6.3. Learning User Intent
The user intent model captures the intention of a user navigating the world using a joystick controlled

robotic wheelchair. The model should thus capture a non-linear mapping from image sequences, along the
wheelchair’s trajectory, to the joystick drive input. To model this complex function, we employ a deep neural
network architecture that integrates features and classifiers in an end-to-end multilayer fashion [35] to find
compact non-linear low dimensional representations of high dimensional data.

The problem of learning shared autonomy user intent for wheelchair navigation can be framed as sequence
learning of the joystick data along the robot's trajectory. To capture both the spatial and temporal aspects of
this formulation, we designed a many-to-one CNN-LSTM network architecture for modeling user intent for
wheelchair navigation. Our deep neural network architecture comprises of a Convolutional Neural Network
(CNN) feature extractor, followed by a Long short-term memory (LSTM) recurrent neural network, and a
final Sequential Layer (a fully connected layer followed by ReLu non-linearity and a final Linear layer for
the regression output).

Our proposed network architecture is similar to the Long-term Recurrent Convolutional Networks LRCN
class of models first proposed by Donahue et. al in [36] for activity monitoring, image captioning and video
description. Our network architecture, which solves a regression problem of learning the user's intent (i.e. the
joystick input) from an ideal driver is summarised in the Figure below.
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Figure 35. The CNN-LSTM model used for learning user driving intent, given a trajectory.

Specifically, a pre-trained ResNet-18 CNN model is used for feature extraction. We apply transfer learning
to extract semantically rich fixed features from a sequence of RGB images along the robotic wheelchair's
trajectory. The 512 dimensional feature sequence forms the input to a LSTM. The final regression output is
generated by a sequence output layer as described above.

Our experiments showed that decoupling the translation and rotational axes of the joystick input results in
better model parameter learning. We therefore train two separate regression models for the separate axes of
the wheelchair’s joystick input, namely the rotational and translational axes. The model for angular axis is a
5-layer LSTM with 128 hidden dimension size, whilst the radial axis model is a 2-layer LSTM with 256
hidden dimension size.

Formally, Recurrent Neural Networks (RNNs) model temporal dynamics by mapping input sequences to
hidden states, and hidden states to outputs using the following recurrence equations:

h t =g( W xh x t + W hh h t-1 + b h ) (21)

z t =g( W hz h t + b z ) (22)

where ht
N and zt is the hidden state with N hidden units and output at time t respectively. The input is∈ Ձ

given by xt , and g represents a non-linear element-wise activation function. The model learns the weights W
and biases b from the data. RNNs suffer from the exploding and vanishing gradient problems when
propagating the gradients through many layers of the network (i.e. long timesteps) thus making them
ill-suited for learning long-term dynamics [37]. LSTMs solve this problem by incorporating memory units
such that the network can learn when to forget previous hidden states and how to propagate information
through various gates [36]. In our implementation, our input (i t) , forget (f t) , cell (gt) and output (ot) gates
are given by:
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i t =σ( Wiixt   + bii   + Whih   + bhi   ) (23)

f t   =σ( Wifxt   + bif   + Whf h   + bhf   ) (24)

g t   =tanh( Wigxt   + big   + Whg h   + bhg   ) (25)

o t =σ( Wioxt   + bio   + Who   h 1   + bho   )  (26)

c t = ft    + it  t (27)

  h t   = ot  t   ) (28)

where σ is the Sigmoid function, ct is the cell state at time t , and ☉ is the Hadamard product.

Our model is trained using the Huber Loss (Smooth L1) function and the Adam optimiser with a starting
learning rate of 0.001. We schedule the initial learning rate to decay on plateau by a factor of 0.1 using a
threshold of 1e-4 and patience of 5. Both models are trained on the GPU using a batch size of 16 and
timestep (sequence length) of 32 image sequences. The angular and radial axis models are trained for a total
of 100 and 50 epochs, respectively.

We choose the Huber Loss over the Mean Squared Error (MSE) loss since it is less sensitive to outliers as
defined below:

loss( x,y ) = i  (29)

where Li is given by:

(30)

We set α to 1 during training and x and y denote the true and predicted values, respectively. In our
experiments, we collect ideal driving data from non visually impaired users. This data is used to train our
user intent models for both joystick axes. Our empirical experiments showed improved performance when
training two separate regression models, compared to a combined model to predict both axes simultaneously.
This is, in part, due to the limited amount of training data we have relative to the number of parameters in the
model.

6.4. Experimental Results
Our robot wheelchair platform has a motor controller unit that translates noisy user input (joystick) data

into smooth velocity commands. The routes we considered also contain sequences of the wheelchair driving
in the forward direction and taking multiple turns. The noisy joystick data also arises from the driving
behaviours of users such as suddenly letting go of the joystick to come to a complete stop (which translates
to a sharp discontinuity to zero in the translational axis).

Our user intent models are trained on a dataset comprising three trial driving sequences and validated on
one long sequence. We trained two separate models for each axis of the joystick user interface. The angular
axis user intent regression model, which captures the robotic wheelchair’s angular rotation, achieved a MSE
and RME of 0.048 and 0.219 respectively. The predictions (compared to the groundtruth) user intent model
for decoupled rotation is shown in Figure 35.
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Figure 36. User intent model performance for the rotational joystick axis.

For the robotic wheelchair, a rotation of 1 represents a sharp right turn input signal, while a rotation of -1
represents a sharp left turn input signal. The sensitivity of the input is such that a difference of about 0.2 is
not meaningfully noticeable for the wheelchair user.

The radial axis user intent regression model, which captures the robotic wheelchair’s linear translational
motion, performed with a MSE and RME of 0.100 and 0.316 respectively. The predictions and groundtruth
of user intent joystick input for decoupled translation is shown in Figure 36. In this figure, 0 represents a
stationary wheelchair and 1.0 is the wheelchair moving forward at maximum speed (for the selected joystick
profile). Steering the wheelchair backwards would require a negative joystick input, where -1.0 represents
reversing at maximum speed.
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Figure 37. User intent model performance for the translational joystick axis.

Both of the results above (Figure 35, Figure 36) show a period where the wheelchair is stationary (at the
end of the trial) and both of the joystick axes are at 0.

Our user intent model predicts varying forward joystick drive inputs which at times deviate from the
ground truth (most notably the last section where the wheelchair is stationary but predictions are moving).
This can largely be explained by the fact that our model captures, as input, image sequence data which could
be drastically changing across the timesteps considered, due to people moving, even though the robotic
wheelchair is stationary. Including data which encodes the motion of the wheelchair (for example the wheel
encoders) would serve to mitigate this. Reliable wheel encoder data was not available at the time of the data
collection.

Both models show that the user joystick input raw data is noisy since this is interpolated by the robot
wheelchair’s motor controller. Although learning from this noisy data is challenging, our models perform
within the observed error tolerance of the raw joystick input data.
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6.5. Discussion
User intent refers to the hidden unknown internal state of a wheelchair user. Our model specifically seeks

to predict the driving intent of a wheelchair user along a given trajectory which is parameterised by a
sequence of images. Our initial results are promising and show that it is possible to learn decoupled user
input models from noisy data. In future, we envision that such models could be used to replace or augment
incomplete user input, for example that provided by patients with visual impairments (such as hemineglect),
thus facilitating increased mobility and independence.

7. Conclusion
In this deliverable, we presented a range of different methods to achieve shared control in a

pedestrian-populated environment. We then proposed a novel hierarchical design where we extended the
Probabilistic Shared Control (PSC) implementation to account for the probability distribution of dynamic
obstacles and their influence on robot navigation. In this approach, the shared control is achieved by
maximizing the joint probability between the user, the path planner and the surrounding obstacles. We
evaluated this method from six crucial aspects: path efficiency, effect on crowds, crowd-robot interaction,
pedestrian-robot similarity, collisions, and shared control performance. Simulator experiment results indicate
that even though the modelled pedestrians were strongly affected by the wheelchair’s motion, it was able to
follow the user’s intention (unless there was a collision risk). The wheelchair was able to support the user
and navigate efficiently in an environment populated with moving pedestrians, whilst minimising physical
contact. When compared with other approaches, our method showed the least number of collisions while
obtaining relatively low computational cost and high user agreement.

In addition, we have developed a method for extracting user control input from sensory data through
machine learning, closing the shared control loop with an inverse function. In the future, this could enable
the replacement of missing or corrupted control input, opening the possibility for methods based on
continuous control sharing to be used with a wider range of impairments.

The impact of COVID19 restrictions on this deliverable has been non-trivial. In particular, all
non-simulated crowd experiments and user studies were put on hold as a result. Nevertheless we were able to
utilise our substantial real-world crowd-robot datasets that we collected prior to the pandemic to underpin
our modelling. In the future, we will further improve this method by incorporating a more complex
interaction function and perform further experiments in (physical) crowds, which will be reported in
Deliverable 1.5.
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